// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<queue> using namespace std; const int N = 100010, M = 1000010; // int ver[M], Next[M], head[N], dfn[N], low[N]; int stack[N], ins[N], c[N]; int vc[M], nc[M], hc[N], tc; //强连通分量 vector<int> scc[N]; int n, m, tot, num, top, cnt; void add(int x, int y) { ver[++tot] = y, Next[tot] = head[x], head[x] = tot; } //缩点后建图 void add_c(int x, int y) { vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc; } void tarjan(int x) { dfn[x] = low[x] = ++num; stack[++top] = x, ins[x] = 1;//标记x点 for (int i = head[x]; i; i = Next[i]) //未走过 if (!dfn[ver[i]]) { tarjan(ver[i]); //递归更新 low[x] = min(low[x], low[ver[i]]); } else if (ins[ver[i]]) //直接更新 low[x] = min(low[x], dfn[ver[i]]); if (dfn[x] == low[x]) { //一个强连通 cnt++; int y; do { y = stack[top--], ins[y] = 0; //属于哪一个强连通 c[y] = cnt, scc[cnt].push_back(y); } while (x != y); } } int main() { cin >> n >> m; for (int i = 1; i <= m; i++) { int x, y; scanf("%d%d", &x, &y); add(x, y); } for (int i = 1; i <= n; i++) if (!dfn[i]) tarjan(i); for (int x = 1; x <= n; x++) for (int i = head[x]; i; i = Next[i]) { int y = ver[i]; if (c[x] == c[y]) continue; add_c(c[x], c[y]); } }