C++ 强连通分量 - 缩点(Tarjan算法)

本文介绍了Tarjan算法用于求解有向图的强连通分量,强调了算法原理和在洛谷P3387题中的应用。通过深度优先搜索,利用dfn和low值判断强连通分量,并提供了代码实现。
摘要由CSDN通过智能技术生成

目录:

简介缩点

实现


简介缩点:

        如果两个顶点可以相互通达,则称两个顶点强连通 ( strongly connected ) 。

        如果有向图G的每两个顶点都强连通,称 G 是一个强连通图。有向图的极大强连通子图,称为强连通分量 ( strongly connected components ) 。

        Tarjan 算法是用来求有向图的强连通分量的。求有向图的强连通分量的 Tarjan 算法是以其发明者 Robert Tarjan 命名的。Robert Tarjan 还发明了求双连通分量的Tarjan算法。


实现:

        老规矩,引入例题: 洛谷 P3387 【模板】缩点 

        分析:需要找出一条点权最大的路径就行了,不限制点的个数。考虑对于一个环上的点被选择了,那么一整条环都被选择。很关键的是题目还允许重复经过某条边或者某个点,因此整个环实际上可以看成一个点(选了其中一个点就应该选其他的点)。

        显然,是一道缩点 + 拓扑排序

        既然缩点,就不得不提一下 Tarjan 算法:

        Tarjan 算法是基于对图深度优先搜索的算法,每个强连通分量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值