2022吴恩达机器学习(Deep learning)课程对应笔记4:无监督学习2

该笔记主要探讨无监督学习的概念,包括数据只有输入没有输出标签的情况。无监督学习通过发现数据内在的结构和特征,如聚类用于组织相似数据,异常分析用于识别异常点,以及降维技术来压缩高维数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2022吴恩达机器学习(Deep learning)课程对应笔记4

无监督学习

更新时间:2023/03/19
在这里插入图片描述

概述

无监督学习中只给输入input ( x ) (x) (x),但是没有输出标签 ( y ) (y) (y)。算法不得不找到数据中的结构特征

  1. 聚类:将相似的数据点聚类在一起。
  2. 异常分析:可以找出数据中异常的数据点
  3. 降维:可以把数据压缩到一个相当小的维度
    在这里插入图片描述
    下面是问题哦,自行作答(答案是B和C)
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值