2022吴恩达机器学习(Deep learning)课程对应笔记19:检查梯度下降是否收敛&学习率选择

文章讨论了在执行梯度下降时如何检查其是否收敛,建议通过观察损失函数随迭代减少的趋势,并设定一个阈值ε来判断收敛。此外,学习率的选择对模型优化至关重要,太小可能导致慢速收敛,而合适的学习率范围应能确保损失函数在每次迭代中降低。
摘要由CSDN通过智能技术生成

2022吴恩达机器学习(Deep learning)课程对应笔记19

检查梯度下降是否收敛&学习率选择

更新时间:2023/03/20
在这里插入图片描述

概述

当我们在左梯度下降是,应该怎么检查梯度下降是否收敛呢?下面是梯度下降的公式
在这里插入图片描述
值得思考的是,如何保证梯度下降正确的工作,

  • 首先我们要明确的目标是: m i n w ⃗ , b J ( w ⃗ , b ) min_{\vec{w},b}J(\vec{w},b) minw ,bJ(w ,b),正常的迭代曲线应该如下如所示,随着迭代轮数的增加,损失函数的值在不断下降。下图就可以看出梯度下降是否在正确工作。
  • 另外你可以做一个自动收敛测试,设置一个 ε = 0.001 \varepsilon=0.001 ε=0.001,当KaTeX parse error: Undefined control sequence: \ver at position 3: J(\̲v̲e̲r̲{w},b)的值小于 ε \varepsilon ε时,通常认为已经收敛了。
    在这里插入图片描述

学习率选择

在这里插入图片描述
如何为模型选择学习率也是不错过模型最优的参数的重要因素之一。

  • 理论上用一个足够小的学习率,损失函数 J ( w ⃗ , b ) J(\vec{w},b) J(w ,b)在每次迭代中都会减小。只不过导致收敛得很慢。

在这里插入图片描述

  • 学习率可以尝试的一系列值如下所示
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值