2022吴恩达机器学习(Deep learning)课程对应笔记19
检查梯度下降是否收敛&学习率选择
更新时间:2023/03/20
概述
当我们在左梯度下降是,应该怎么检查梯度下降是否收敛呢?下面是梯度下降的公式
值得思考的是,如何保证梯度下降正确的工作,
- 首先我们要明确的目标是: m i n w ⃗ , b J ( w ⃗ , b ) min_{\vec{w},b}J(\vec{w},b) minw,bJ(w,b),正常的迭代曲线应该如下如所示,随着迭代轮数的增加,损失函数的值在不断下降。下图就可以看出梯度下降是否在正确工作。
- 另外你可以做一个自动收敛测试,设置一个
ε
=
0.001
\varepsilon=0.001
ε=0.001,当KaTeX parse error: Undefined control sequence: \ver at position 3: J(\̲v̲e̲r̲{w},b)的值小于
ε
\varepsilon
ε时,通常认为已经收敛了。
学习率选择
如何为模型选择学习率也是不错过模型最优的参数的重要因素之一。
- 理论上用一个足够小的学习率,损失函数 J ( w ⃗ , b ) J(\vec{w},b) J(w,b)在每次迭代中都会减小。只不过导致收敛得很慢。
- 学习率可以尝试的一系列值如下所示