Description
\(n\) 个炸弹,每个炸弹有两个放置点,可以任选一个,问你最大的半径是多少.
Sol
二分+2-SAT+Tarjan.
首先二分一下答案.然后就成了一个2-SAT问题.
建模就是, \(i\) 如果和 \(j\) 的距离超过 \(x*2\),那么 \(i\) 只能选择 \(j\) ^ \(1\) 连边,同时 \(j\) 只能选择 \(i\) ^ \(1\) 连边.
最后用Tarjan所以下环,如果两个点在一个环中,那么就不合法.
Code
#include <bits/stdc++.h>
using namespace std;
#define F first
#define S second
#define mpr make_pair
#define sqr(x) ((x)*(x))
const int N = 205;
const double eps = 1e-5;
typedef pair< int,int > pr;
typedef pair< pr,pr > prr;
int n,c,cnt,cntb;
pr a[N];
vector< int > g[N];
int d[N],b[N];
int stk[N],instk[N],top;
inline int in(int x=0) { scanf("%d",&x);return x; }
void clr() {
cntb=cnt=top=0;
for(int i=0;i<N;i++) g[i].clear();
memset(d,0,sizeof(d)),memset(b,0,sizeof(b)),memset(instk,0,sizeof(instk));
}
double Dist(pr x,pr y) { return sqrt((double)sqr(x.F-y.F)+sqr(x.S-y.S)); }
void Tarjan(int u,int fa) {
d[u]=++cnt,stk[++top]=u,instk[u]=1;int dfsn=cnt;
for(int i=0,v;i<(int)g[u].size();i++) if((v=g[u][i])!=fa) {
if(!d[v]) Tarjan(v,u);
if(instk[v]) d[u]=min(d[u],d[v]);
}
if(d[u]==dfsn) {
for(++cntb;stk[top]!=u;top--) {
b[stk[top]]=cntb,instk[stk[top]]=0;
}b[stk[top]]=cntb,instk[stk[top--]]=0;
}
// cout<<u<<":"<<d[u]<<" "<<dfsn<<endl;
}
int check(double x) {
clr();
for(int i=0;i<c;i++) for(int j=i&1 ? i+1 : i+2;j<c;j++)
if(Dist(a[i],a[j])<x*2) g[i].push_back(j^1),g[j].push_back(i^1);
// cout<<"("<<i<<","<<j<<")"<<Dist(a[i],a[j])<<endl,
for(int i=0;i<c;i++) if(!d[i]) Tarjan(i,i);
/* cout<<x<<endl;
for(int i=0;i<c;i++) {
cout<<i<<":"<<endl;
for(int j=0;j<(int)g[i].size();j++) cout<<g[i][j]<<" ";
cout<<endl;
}
for(int i=0;i<c;i++) cout<<b[i]<<" ";cout<<endl;
cout<<"-------------------------"<<endl;*/
for(int i=0;i<c;i++) if(b[i]==b[i^1]) return 0;
return 1;
}
int main() {
// freopen("in.in","r",stdin);
while(~scanf("%d",&n)) {
c=0;
for(int i=1;i<=n;i++) {
int x=in(),y=in();
a[c++]=mpr(x,y);
x=in(),y=in();
a[c++]=mpr(x,y);
}
double l=0.0,r=20000.0,mid;
while(r-l > eps) {
mid=(l+r)/2.0;
if(check(mid)) l=mid;
else r=mid;
}printf("%.2lf\n",mid);
}return 0;
}