Description
求一个最长的串,使得他是\(s_1,s_2\)的子串,但\(s_3\)不是他的子串。
Solution
后缀数组+二分答案+KMP.
单调性显然...首先可以二分一个答案,然后判断。
判断方法就是取出\(height\)一段大于等于\(mid\)的区间,然后看看中间有没有\(s_3\)出现,这个可以用KMP预处理出\(s_3\)的匹配结尾位置来做到\(O(n)\)查询。
因为最多会匹配\(O(\frac{n}{mid})\)次,所以判断复杂度为\(O(n)\)
总复杂度\(O(nlogn)\)
Code
/**************************************************************
Problem: 3796
User: BeiYu
Language: C++
Result: Accepted
Time:532 ms
Memory:5300 kb
****************************************************************/
#include <bits/stdc++.h>
using namespace std;
const int N = 100050;
int n,m,l,r,l1,l2,l3;
char s[N];
int a[N],b[N];
namespace SA {
int t1[N],t2[N],c[N],sa[N],rk[N],ht[N];
void get_sa(int a[],int n=::n,int m=::m) {
int *x=t1,*y=t2;
for(int i=1;i<=m;i++) c[i]=0;
for(int i=1;i<=n;i++) c[x[i]=a[i]]++;
for(int i=1;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i;--i) sa[c[x[i]]--]=i;
for(int k=1,p=0;k<n;k<<=1,p=0) {
for(int i=n-k+1;i<=n;i++) y[++p]=i;
for(int i=1;i<=n;i++) if(sa[i]>k) y[++p]=sa[i]-k;
for(int i=1;i<=m;i++) c[i]=0;
for(int i=1;i<=n;i++) c[x[i]]++;
for(int i=1;i<=m;i++) c[i]+=c[i-1];
for(int i=n;i;--i) sa[c[x[y[i]]]--]=y[i];
swap(x,y),x[sa[1]]=p=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?p:++p;
if(p>=n) break;m=p;
}
}
void get_ht(int a[],int n=::n) {
for(int i=1;i<=n;i++) rk[sa[i]]=i;
for(int i=1,j,k=0;i<=n;ht[rk[i++]]=k)
for(j=sa[rk[i]-1],k=k?k-1:k;a[i+k]==a[j+k];k++);
}
}
namespace KMP {
int f[N],p[N];
void get_f(int a[],int n=::n) {
for(int i=2,j=0;i<=n;i++) {
while(j && a[i]!=a[j+1]) j=f[j];
if(a[i]==a[j+1]) j++;
f[i]=j;
}
}
void get_p(int a[],int b[],int n=::n,int m=::l3) {
for(int i=1,j=0;i<=n;i++) {
while(j && a[i]!=b[j+1]) j=f[j];
if(a[i]==b[j+1]) j++;
if(j==m) p[i]=1,j=f[j];
}
}
int get_m(int st,int n,int m) {
for(int i=st+m-1;i<=st+n-1;i++) if(p[i]) return 0;
return 1;
}
}
using namespace SA;
using namespace KMP;
int chk(int x) {
for(int i=1,j;i<=n;i=j) {
if(ht[i]<x) { j=i+1;continue; }
int f1=sa[i-1]<=l1,f2=sa[i-1]>l1;
for(j=i;j<=n && ht[j]>=x;f1|=(sa[j]<=l1),f2|=(sa[j]>l1),j++);
if(f1 && f2 && get_m(sa[i],x,l3)) return 1;
}return 0;
}
int main() {
scanf("%s",s+1);
l1=n=strlen(s+1);
for(int i=1;i<=n;i++) a[i]=s[i]-'a'+1;
a[++n]=27;
scanf("%s",s+1);
l2=l=strlen(s+1);
for(int i=1;i<=l;i++) a[++n]=s[i]-'a'+1;
get_sa(a,n,28);
get_ht(a,n);
scanf("%s",s+1);
l3=l=strlen(s+1);
for(int i=1;i<=l;i++) b[i]=s[i]-'a'+1;
get_f(b,l3);
get_p(a,b);
l=0,r=n;
for(;l<=r;) {
int mm=(l+r)>>1;
if(chk(mm)) l=mm+1;
else r=mm-1;
}printf("%d\n",r);
return 0;
}