笔试编程题

题目一:

正整数N从1开始,每次操作可以选择对N加1或者对N乘2.若想获得正整数M,最少需要多少个操作。

样例:

输入:5

输出:3

动态规划:

#include <iostream>

using namespace std;

int minOpt(int M)
{
    if (M<=1 || M>=65536)
        return -1;
    if (M == 2)
          return 1;
    else
    {
        int num[M+1];
        num[0] = -1;
        num[1] = -1;
        num[2] = 1;
        for(int i=3;i<=M;i++)
        {
            if(i%2 == 0)
            {
                num[i] = (num[i-1] < num[i/2] ? (num[i-1]+1) : (num[i/2]+1));
            }
            else
                num[i] = num[i-1]+1;
        }
        return num[M];
    }
}

int main()
{
    int M;
    while(cin >> M)
    {
          int res = minOpt(M);
          cout << res << endl;
    }
    return 0;
}


题目二:

矩阵输出,给定一个二维矩阵,请将其中的元素按Z字形打印出来。

样例:

输入:

4 5

1 2 3 4 5

6 7 8 9 10 

11 12 13 14 15

16 17 18 19 20


输出:1 2 6 11 7 3 4 8 12 16 17 13 9 5 10 14 18 19 15 20

#include <iostream>
#include <stdio.h>

using namespace std;

int main()
{
    int m, n;
    scanf("%d %d", &m, &n);
    int input[m][n];
    for (int i=0; i<m; i++) {
        for (int j=0; j<n; j++) {
            cin >> input[i][j];
        }
    }

    int i=0;
    int j=0;
    do {
        cout << input[i][j];
        cout << " ";
        if ((i+j)%2 == 0)   //行列之和为偶数
        {
            if (i == 0 && j<(n-1))
            {
                j++;
            }
            else if (j == (n-1))
            {
                i++;
            }
            else
            {
                i--;
                j++;
            }
        }
        else {  //行列之和为奇数
            if (j == 0 && i<(m-1))
            {
                i++;
            }
            else if (i == (m-1))
            {
                j++;
            }
            else {
                i++;
                j--;
            }
        }
    }
    while (i<m && j<n);
    i--;
    j++;
    do {
        if (i<m && j<n) {
            cout << input[i][j];
            cout << " ";
        } else {
            break;
        }
        if ((i+j)%2 == 0)   //行列之和为偶数
        {
            if (j == 0 && i<(n-1))
            {
                i++;
            }
            else if (j == (n-1))
            {
                i++;
            }
            else {
                i--;
                j++;
            }
        }
        else {  //行列之和为奇数
            if (j == 0 && i<(m-1))
            {
                i++;
            }
            else if (i == (m-1))
            {
                j++;
            }
            else
            {
                i++;
                j--;
            }
        }
    }
    while (i<m && j<n);

    return 0;
}


题目三:

给定一个无序的数组nums,重排序使其满足这种顺序:nums[0] < nums[1] > nums[2] < nums[3]...

Note:

可以假设所有的输入都是有效输入。

Follow Up:

是否能够在O(n)的时间复杂度或者O(1)的空间复杂度下完成算法。(leetcode324题--Wiggle Sort II)。

//时间复杂度O(n),空间复杂度O(n)。
class Solution {
public:
    void wiggleSort(vector<int>& nums) {
        vector<int> tmp = nums;
        int n = nums.size(), k = (n+1)/2, j = n;
        sort(tmp.begin(), tmp.end());
        for (int i=0; i<n; ++i) {
            nums[i] = i&1 ? tmp[--j] : tmp[--k];
        }
    }
};

/**
1. 使用O(n)时间复杂度的quickSelect算法,从未经排序的数组nums中选出中位数mid

2. 参照解法I的思路,将nums数组的下标x通过函数idx()从[0, 1, 2, ... , n - 1, n] 映射到 [1, 3, 5, ... , 0, 2, 4, ...],得到新下标ix

3. 以中位数mid为界,将大于mid的元素排列在ix的较小部分,而将小于mid的元素排列在ix的较大部分。

详见:https://discuss.leetcode.com/topic/32929/o-n-o-1-after-median-virtual-indexing/2
*/
//时间复杂度O(n),空间复杂度O(1)。笔试题中出现过
class Solution {
public:
    void wiggleSort(vector<int>& nums) {
        int n = nums.size();
        auto midptr = nums.begin() + n/2;
        /**nth_element可以使第n大元素处于第n位置(从0开始,其位置是下标为 n的元素)
        并且比这个元素小的元素都排在这个元素之前,比这个元素大的元素都排在这个元素之后,但不能保证他们是有序的
        */
        nth_element(nums.begin(), midptr, nums.end()); //保证O(n)的平均时间复杂度
        int mid = *midptr;

        #define A(i) nums[(1+2*(i))%(n|1)] //保证先输出奇数再输出偶数

        int i = 0, j = 0, k = n-1;
        while (j <= k) {
            if (A(j) > mid)
                swap(A(i++), A(j++));
            else if (A(j) < mid)
                swap(A(j) , A(k--));
            else
                j++;
        }
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值