System.gc()和-XX:+DisableExplicitGC启动参数,以及DirectByteBuffer的内存释放

本文解决了Java堆外内存回收的问题,详细分析了DirectByteBuffer的内存释放机制,强调了System.gc()在堆外内存管理中的作用。讨论了堆内存与堆外内存资源同步释放的挑战,并提出了通过System.gc()避免内存泄露的方法,同时指出其对系统性能的影响。文章还对比了finalize()与sun.misc.Cleaner在垃圾回收中的应用,提供了避免内存泄露的实践建议。

我之前的一篇博客: java中使用堆外内存,关于内存回收需要注意的事和没有解决的遗留问题(等大神解答)  介绍了java堆外内存的使用,以及堆外内存的释放。那篇博客遗留了一个问题:DirectByteBuffer究竟是如何释放堆外内存的?本文主要是解决下那篇博客的遗留问题。

首先我们修改下JVM的启动参数,重新运行之前博客中的代码。JVM启动参数和测试代码如下:

-verbose:gc -XX:+PrintGCDetails -XX:+DisableExplicitGC -XX:MaxDirectMemorySize=40M
import java.nio.ByteBuffer;

public class TestDirectByteBuffer
{
	// -verbose:gc -XX:+PrintGCDetails -XX:MaxDirectMemorySize=40M
	// 加上-XX:+DisableExplicitGC,也会报OOM(Direct buffer memory)
	public static void main(String[] args) throws Exception
	{
		while (true)
		{
			ByteBuffer.allocateDirect(10 * 1024 * 1024);
		}
	}
}
与之前的JVM启动参数相比,增加了-XX:+DisableExplicitGC,这个参数作用是禁止代码中显示调用GC。代码如何显示调用GC呢,通过System.gc()函数调用。如果加上了这个JVM启动参数,那么代码中调用System.gc()没有任何效果,相当于是没有这行代码一样。

Exception in thread "main" java.lang.OutOfMemoryError: Direct buffer memory
	at java.nio.Bits.reserveMemory(Bits.java:632)
	at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:97)
	at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:288)
	at direct.TestDirectByteBuffer.main(TestDirectByteBuffer.java:13)
Heap
 PSYoungGen      total 9536K, used 507K [0x1cf90000, 0x1da30000, 0x27a30000)
  eden space 8192K, 6% used [0x1cf90000,0x1d00ef30,0x1d790000)
  from space 1344K, 0% used [0x1d8e0000,0x1d8e0000,0x1da30000)
  to   space 1344K, 0% used [0x1d790000,0x1d790000,0x1d8e0000)
 PSOldGen        total 21888K, used 0K [0x07a30000, 0x08f90000, 0x1cf90000)
  object space 21888K, 0% used [0x07a30000,0x07a30000,0x08f90000)
 PSPermGen       total 16384K, used 2292K [0x03a30000, 0x04a30000, 0x07a30000)
  object space 16384K, 13% used [0x03a30000,0x03c6d380,0x04a30000)
显然堆内存(包括新生代和老年代)内存很充足,但是堆外内存溢出了。也就是说NIO直接内存的回收,需要依赖于System.gc()。如果我们的应用中使用了java nio中的direct memory,那么使用-XX:+DisableExplicitGC一定要小心,存在潜在的内存泄露风险


我们知道java代码无法强制JVM何时进行垃圾回收,也就是说垃圾回收这个动作的触发,完全由JVM自己控制,它会挑选合适的时机回收堆内存中的无用java对象。代码中显示调用System.gc(),只是建议JVM进行垃圾回收,但是到底会不会执行垃圾回收是不确定的,可能会进行垃圾回收,也可能不会。什么时候才是合适的时机呢?一般来说是,系统比较空闲的时候(比如JVM中活动的线程很少的时候),还有就是内存不足,不得不进行垃圾回收。我们例子中的根本矛盾在于:堆内存由JVM自己管理,堆外内存必须要由我们自己释放;堆内存的消耗速度远远小于堆外内存的消耗,但要命的是必须先释放堆内存中的对象,才能释放堆外内存,但是我们又不能强制JVM释放堆内存


下面我们看下new DirectByteBuffer的源码

DirectByteBuffer(int cap) 
{			

	super(-1, 0, cap, cap, false);
	Bits.reserveMemory(cap);
	int ps = Bits.pageSize();
	long base = 0;
	try {
	    base = unsafe.allocateMemory(cap + ps);
	} catch (OutOfMemoryError x) {
	    Bits.unreserveMemory(cap);
	    throw x;
	}
	unsafe.setMemory(base, cap + ps, (byte) 0);
	if (base % ps != 0) {
	    // Round up to page boundary
	    address = base + ps - (base & (ps - 1));
	} else {
	    address = base;
	}
	cleaner = Cleaner.create(this, new Deallocator(base, cap));
        viewedBuffer = null;
}
static void reserveMemory(long size) 
{

	synchronized (Bits.class) {
	    if (!memoryLimitSet && VM.isBooted()) {
		maxMemory = VM.maxDirectMemory();
		memoryLimitSet = true;
	    }
	    if (size <= maxMemory - reservedMemory) {
		reservedMemory += size;
		return;
	    }
	}
	
	// 显示调用垃圾回收
	System.gc();
	try {
	    Thread.sleep(100);
	} catch (InterruptedException x) {
	    // Restore interrupt status
	    Thread.currentThread().interrupt();
	}
	synchronized (Bits.class) {
	    if (reservedMemory + size > maxMemory)
		throw new OutOfMemoryError("Direct buffer memory");
	    reservedMemory += size;
	}

}
可以看到:每次执行代码ByteBuffer.allocateDirect(10 * 1024 * 1024);的时候,都会调用一次System.gc()。目的很简单,就是希望JVM赶紧把堆中的无用对象回收掉。虽然System.gc()只是建议JVM进行垃圾回收,不能强制。可以这里理解:如此频繁的建议JVM进行垃圾回收,就算堆内存还很充足,JVM也不能对我们显示的GC视而不见啊。所以显示的使用System.gc(),还是有用的。也就是说direct memory的释放,依赖于System.gc()触发JVM的垃圾回收动作,只有回收了堆内存中的DirectByteBuffer对象,才有可能回收DirectByteBuffer对象中占用的堆外内存空间。


回想下java中使用堆外内存,关于内存回收需要注意的事和没有解决的遗留问题 这篇博客中的第4节 正确释放Unsafe分配的堆外内存

我们在RevisedObjectInHeap类中

// 让对象占用堆内存,触发[Full GC  
private byte[] bytes = null;

public RevisedObjectInHeap()  
{  
    address = unsafe.allocateMemory(2 * 1024 * 1024);  
	
	// 占用堆内存
    bytes = new byte[1024 * 1024];  
} 
定义了1M的字节数组,就是为了让JVM赶紧进行垃圾回收,这样当堆内存中的垃圾对象被回收的时候,JVM就能够调用finalize()方法,就能够释放堆外内存。这跟NIO类库中,显示调用System.gc()目的是一样的。至此我们可以得出:堆内存和非堆内存资源(文件句柄、socket句柄,堆外内存、数据库连接等)的同步释放,的确是一个很棘手的问题。虽然通过System.gc()能够避免内存泄露,但是严重影响系统的运行效率,因为垃圾回收会减慢系统的运行。最佳编程实践是:暴露出释放资源的接口,程序员使用完成后,显示释放,这样就能够避免堆内存和非堆内存资源的同步释放的难题。


RevisedObjectInHeap类中通过finalize()方法来释放堆外内存的,阅读源码可以发现,NIO中direct memory的释放并不是通过finalize(),而是通过sun.misc.Cleaner实现的

cleaner = Cleaner.create(this, new Deallocator(base, cap));


为什么不用finalize呢?因为finalize不安全,也非常影响性能。什么是sun.misc.Cleaner?这是个幽灵引用PhantomReference。后续博客将继续分析finalize和Cleaner等垃圾回收相关的知识,欢迎关注。


JVM参数设置详细说明、JVM 参数设置详细说明 1: heap size a: -Xmx 指定jvm的最大heap大小,如:-Xmx=2g b: -Xms 指定jvm的最小heap大小,如:-Xms=2g,高并发应用,建议-Xmx一样,防止因为内存收缩/突然增大带来的性能影响。 c: -Xmn 指定jvm中New Generation的大小,如:-Xmn256m。这个参数很影响性能,如果你的程序需要比较多的临时内存,建议设置到512M,如果用的少,尽量降低这个数值,一般来说128/256足以使用了。 d: -XX:PermSize= 指定jvm中Perm Generation的最小值,如:-XX:PermSize=32m。这个参数需要看你的实际情况,可以通过jmap命令看看到底需要多少。 e: -XX:MaxPermSize= 指定Perm Generation的最大值,如:-XX:MaxPermSize=64m f: -Xss 指定线程桟大小,如:-Xss128k,一般来说,webx框架下的应用需要256K。如果你的程序有大规模的递归行为,请考虑设置到512K/1M。这个需要全面的测试才能知道。不过,256K已经很大了。这个参数对性能的影响比较大的。 g: -XX:NewRatio= 指定jvm中Old Generation heap size与New Generation的比例,在使用CMS GC的情况下此参数失效,如:-XX:NewRatio=2 h: -XX:SurvivorRatio= 指定New Generation中Eden Space与一个Survivor Space的heap size比例,-XX:SurvivorRatio=8,那么在总共New Generation为10m的情况下,Eden Space为8m i: -XX:MinHeapFreeRatio= 指定jvm heap在使用率小于n的情况下,heap进行收缩,Xmx==Xms的情况下无效,如:-XX:MinHeapFreeRatio=30 j: -XX:MaxHeapFreeRatio= 指定jvm heap在使用率大于n的情况下,heap 进行扩张,Xmx==Xms的情况下无效,如:-XX:MaxHeapFreeRatio=70 k: -XX:LargePageSizeInBytes= 指定Java heap的分页页面大小, 如:-XX:LargePageSizeInBytes=128m 2: garbage collector a: -XX:+UseParallelGC 指定在New Generation使用parallel collector,并行收集,暂停,app threads,同时启动多个垃圾回收thread,不能CMS gc一起使用。系统吨吐量优先,但是会有较长长时间的app pause,后台系统任务可以使用此 gc b: -XX:ParallelGCThreads= 指定parallel collection时启动的thread个数,默认是物理processor的个数 c: -XX:+UseParallelOldGC 指定在Old Generation使用parallel collector d: -XX:+UseParNewGC 指定在New Generation使用parallel collector,是UseParallelGCgc的升级版本,有更好的性能或者优点,可以CMS gc一起使用 e: -XX:+CMSParallelRemarkEnabled 在使用UseParNewGC的情况下,尽量减少mark的时间 f: -XX:+UseConcMarkSweepGC 指定在Old Generation使用concurrent cmark sweep gcgc threadapp thread并行(在init-markremark时pause app thread)。app pause时间较短,适合交互性强的系统,如web server g: -XX:+UseCMSCompactAtFullCollection 在使用concurrent gc的情况下,防止memory fragmention,对live object进行整理,使memory 碎片减少 h: -XX:CMSInitiatingOccupancyFraction= 指示在old generation 在使用了n%的比例后,启动concurrent collector,默认值是68,如:-XX:CMSInitiatingOccupancyFraction=70 有个bug,在低版本(1.5.09 and early)的jvm上出现, http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6486089 i: -XX:+UseCMSInitiatingOccupancyOnly 指示只有在old generation在使用了初始化的比例后concurrent collector启动收集 3:others a: -XX:MaxTenuringThreshold= 指定一个object在经历了n次young gc后转移到old generation区,在linux64的java6下默认值是15,此参数对于throughput collector无效,如:-XX:MaxTenuringThreshold=31 b: -XX:+DisableExplicitGC 禁止java程序中的full gc,如System.gc()的调用。最好加上么,防止程序在代码里误用了。对性能造成冲击。 c: -XX:+UseFastAccessorMethods get、set方法转成本地代码 d: -XX:+PrintGCDetails 打应垃圾收集的情况如: [GC 15610.466: [ParNew: 229689K->20221K(235968K), 0.0194460 secs] 1159829K->953935K(2070976K), 0.0196420 secs] e: -XX:+PrintGCTimeStamps 打应垃圾收集的时间情况,如: [Times: user=0.09 sys=0.00, real=0.02 secs] f: -XX:+PrintGCApplicationStoppedTime 打应垃圾收集时,系统的停顿时间,如: Total time for which application threads were stopped: 0.0225920 seconds 4: a web server product sample and process JAVA_OPTS=" -server -Xmx2g -Xms2g -Xmn256m -XX:PermSize=128m -Xss256k -XX:+DisableExplicitGC -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:LargePageSizeInBytes=128m -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=70 " 最初的时候我们用UseParallelGCUseParallelOldGC,heap开了3G,NewRatio设成1。这样的配置下young gc发生频率约12、3秒一次,平均每次花费80ms左右,full gc发生的频率极低,每次消耗1s左右。从所有gc消耗系统时间看,系统使用率还是满高的,但是不论是young gc还是old gc,application thread pause的时间比较长,不合适 web 应用。我们也调小New Generation的,但是这样会使full gc时间加长。 后来我们就用CMS gc-XX:+UseConcMarkSweepGC),当时的总heap还是3g,新生代1.5g后,观察不是很理想,改为jvm heap为2g新生代设置-Xmn1g,在这样的情况下young gc发生的频率变成7、8秒一次,平均每次时间40-50毫秒左右,CMS gc很少发生,每次时间在init-markremark(two steps stop all app thread)总共平均花费80-90ms左右。 在这里我们曾经New Generation调大到1400m,总共2g的jvm heap,平均每次ygc花费时间60-70ms左右,CMS gc的init-markremark之平均在50ms左右,这里我们意识到错误的方向,或者说CMS的作用,所以进行了修改。 最后我们调小New Generation为256m,young gc 2、3秒发生一次,平均停顿时间在25毫秒左右,CMS gc的init-markremark之平均在50ms左右,这样使系统比较平滑,经压力测试,这个配置下系统性能是比较高的。 在使用CMS gc的时候他有两种触发gc的方式:gc估算触发heap占用触发。我们的1.5.0.09 环境下有次old 区heap占用在30%左右,她就频繁gc,个人感觉系统估算触发这种方式不靠谱,还是用 heap 使用比率触发比较稳妥。 这些数据都来自64位测试机,过程中的数据都是我在jboss log找的,当时没有记下来,可能存在一点点偏差,但不会很大,基本过程就是这样。 5: 总结 web server作为交互性要求较高的应用,我们应该使用Parallel+CMS,UseParNewGC这个在jdk6 -server上是默认的new generation gc,新生代不能太大,这样每次pause会短一些。CMS mark-sweep generation可以大一些,可以根据pause time实际情况控制。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值