Treats for the Cows
题目大意:
给你n个数字,每次只能从两端取一个数,每取一个数就乘上这个数取的次序(即第几次取到这个数就乘几),最后使得和最大。
数据范围:
1≤n≤1000,1≤ai≤20001≤n≤1000,1≤ai≤2000。
解题思路:
因为是从两端开始取的,所以我是这么想的,中间的状态由两端转移过来,设一个状态,dp[i][j]代表第i个数到第j个数不取所得到的最大值,即dp[i][j]可由dp[i-1][j]和dp[i][j+1]转移过来,即状态转移方程为:
dp[i][j]=max(dp[i−1][j]+a[i−1]∗(len−1),dp[i][j+1]+a[j+1]∗(len−1)),其中len−1代表取数的个数dp[i][j]=max(dp[i−1][j]+a[i−1]∗(len−1),dp[i][j+1]+a[j+1]∗(len−1)),其中len−1代表取数的个数。
这个做完之后,dp[i][i]就为第i个数不取的最大值,所以最后得和dp[i][i]+a[i]∗ndp[i][i]+a[i]∗n取个最大值。
AC代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn = 2000;
int n;
int dp[maxn + 5][maxn + 5];
int a[maxn + 5];
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i++)scanf("%d", &a[i]);
for(int len = 1; len <= n; len++) {
for(int i = 1; i <= len; i++) {
int j = i + n - len;
dp[i][j] = max(dp[i - 1][j] + a[i - 1] * (len - 1), dp[i][j + 1] + a[j + 1] * (len - 1));
}
}
int Max = 0;
for(int i = 1; i <= n; i++)Max = max(Max, dp[i][i] + a[i] * n);
printf("%d\n", Max);
return 0;
}