POJ - 3186 DP

Treats for the Cows

题目大意:

给你n个数字,每次只能从两端取一个数,每取一个数就乘上这个数取的次序(即第几次取到这个数就乘几),最后使得和最大。

数据范围:

1n1000,1ai20001≤n≤1000,1≤ai≤2000

解题思路:

因为是从两端开始取的,所以我是这么想的,中间的状态由两端转移过来,设一个状态,dp[i][j]代表第i个数到第j个数不取所得到的最大值,即dp[i][j]可由dp[i-1][j]和dp[i][j+1]转移过来,即状态转移方程为:
dp[i][j]=max(dp[i1][j]+a[i1](len1),dp[i][j+1]+a[j+1](len1)),len1dp[i][j]=max(dp[i−1][j]+a[i−1]∗(len−1),dp[i][j+1]+a[j+1]∗(len−1)),其中len−1代表取数的个数
这个做完之后,dp[i][i]就为第i个数不取的最大值,所以最后得和dp[i][i]+a[i]ndp[i][i]+a[i]∗n取个最大值。

AC代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn = 2000;
int n;
int dp[maxn + 5][maxn + 5];
int a[maxn + 5];
int main() {
    scanf("%d", &n);
    for(int i = 1; i <= n; i++)scanf("%d", &a[i]);
    for(int len = 1; len <= n; len++) {
        for(int i = 1; i <= len; i++) {
            int j = i + n - len;
            dp[i][j] = max(dp[i - 1][j] + a[i - 1] * (len - 1), dp[i][j + 1] + a[j + 1] * (len - 1));
        }
    }
    int Max = 0;
    for(int i = 1; i <= n; i++)Max = max(Max, dp[i][i] + a[i] * n);
    printf("%d\n", Max);
    return 0;
}

转载于:https://www.cnblogs.com/TRDD/p/9813527.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值