之前呢,我们对map/multimap/set/multiset的使用进行了简单的介绍,在其文档中发现,这几个容器的底层实现:都是按照二叉搜索树来实现的。接下来,我们学习一下二叉搜索树
一、二叉搜索树
1.1 二叉搜索树的概念
二叉搜索树又称二叉排序树,或者它是一颗空树。
二叉搜索树具有下面的特点:
- 若它的左子树不为空,则它的左子树上的所有节点的值都小于根节点的值
- 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
- 它的左右子树也分别是二叉搜索树
1.2 二叉搜索树的操作
1 二叉搜索树的查找
若根节点不为空:
如根节点key == 查找key,返回true
如根节点key > 查找key,在其左子树查找
如根节点key < 查找key,在其右子树查找
否则,返回false
2 二叉搜索树的插入
a 树为空,直接插入
b 树不空,按照二叉搜索树性质查找插入位置,插入新的节点
3 二叉搜索树的删除
首先查找元素是否在二叉搜索树中,如果不存在,则返回,否则要删除的节点可能存在下面的四种情况:
a 要删除的节点无孩子节点
b 要删除的节点只有左孩子节点
c 要删除的节点只有右孩子节点
d 要删除的节点只有左、右孩子节点
看起来要删除节点有四种情况,实际情况a可以和情况b或者c合并起来,因此真正的删除过程如下:
情况b:删除该节点且使被删除节点的双亲节点指向被删除节点的左孩子节点
情况c: 删除该节点且使被删除节点的双亲节点指向被删除节点的右孩子节点
情况d: 在它的右子树中寻找中序下的第一个节点,(关键值最小),用它的值补到被删除节点中,在处理该节点的删除问题
二、模拟实现二叉搜索树
#pragma once
#include<iostream>
using namespace std;
template<class T>
struct BSTNode
{
BSTNode(const T& data = T())
{
_left = nullptr;
_right = nullptr;
_data = data;
}
BSTNode<T>* _left;
BSTNode<T>* _right;
T _data;
};
template<class T>
class BSTree
{
typedef BSTNode<T> Node;
typedef Node* PNode;
public:
BSTree()
:_root(nullptr)
{}
//销毁要实现为递归,析构函数不能递归
~BSTree()
{
_Destroy(_root);
}
PNode Copy(PNode root)
{
if (root == nullptr)
return nullptr;
PNode newroot = new Node(root->_data);
newroot->_left = Copy(root->_left);
newroot->_right = Copy(root->_right);
return newroot;
}
BSTree(const BSTree<T>& tree)
{
_root = Copy(tree._root);
}
//赋值的两种写法
BSTree<T>& operator=(const BSTree<T>& tree)
{
if (this != &tree)
{
Destroy(this->_root);
this->_root = Copy(tree._root);
}
return *this;
}
BSTree<T>& operator=(BSTree<T> tree)
{
swap(this->_root, tree._root);
return *this;
}
PNode Find(const T& data)
{
PNode cur = _root;
while (cur)
{
if (data == cur->_data)
return cur;
else if (data > cur->_data)
cur = cur->_left;
else
cur = cur->_right;
}
return nullptr;
}
bool Insert(const T& data)
{
//如果树为空,直接插入
if (nullptr == _root)
{
_root = new Node(data);
return true;
}
//按照二叉搜索树的性质查找data在数中的插入位置
PNode cur = _root;
//记录cur的双亲,因为新元素的最终插入在cur双亲左右孩子的位置
PNode parent = nullptr;
while (cur)
{
parent = cur;
if (data < cur->_data)
cur = cur->_left;
else if (data > cur->_data)
cur = cur->_right;
else
return false;
}
//插入元素
cur = new Node(data);
if (data < parent->_data)
parent->_left = cur;
else
parent->_right = cur;
return true;
}
bool Erase(const T& data)
{
PNode parent = nullptr;
PNode cur = _root;
//如果树为空,删除失败
if (_root == nullptr)
return false;
//查找data在树中的位置
//1、节点左为空,父亲指向节点的右,删除节点
//2、节点右为空,父亲指向节点的左,删除节点
//3、节点的左右都不为空,找右树的最左节点或者左树的最右节点
while (cur)
{
if (cur->_data > data)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_data < data)
{
parent = cur;
cur = cur->_right;
}
else
{
PNode del = cur;
if (cur->_left == nullptr)
{
if (parent == nullptr)
{
_root = _root->_right;
}
else
{
if (parent->_left == cur)
{
parent->_left = cur->_right;
}
else
{
parent->_right = cur->_right;
}
}
}
else if (cur->_right == nullptr)
{
if (parent == nullptr)
{
_root = _root->_left;
}
else
{
if (cur == parent->_left)
{
parent->_left = cur->_left;
}
else
{
parent->_right = cur->_left;
}
}
}
else
{
//找替代节点
PNode replace = cur->_right;
PNode p_replace = cur;//这里的r_replace不能是空指针,因为如果cur的左为空,下面的循环不会进入
while (replace->_left)
{
p_replace = replace;
replace = replace->_left;
}
cur->_data = replace->_data;
//删除替代节点,注意最左节点不一定是左子树的节点,因为,要删除节点的左可能为空
if (p_replace->_left == replace)
{
p_replace->_left = replace->_right;
}
else
{
p_replace->_right = replace->_right;
}
del = replace;
}
delete del;
return true;
}
}
return false;
}
//因为根是私有的,可以通过函数拿到根,但这里我们不这样实现
void InOrder()
{
_InOrder(_root);
cout << endl;
}
void _InOrder(PNode root)
{
if (root)
{
_InOrder(root->_left);
cout << root->_data << " ";
_InOrder(root->_right);
}
}
void _Destroy(PNode& root)
{
if (root == nullptr)
return;
_Destroy(root->_left);
_Destroy(root->_right);
delete _root;
}
private:
PNode _root;
};
int main()
{
BSTree<int> b;
b.Insert(5);
b.Insert(3);
b.Insert(4);
b.Insert(1);
b.Insert(7);
b.Insert(8);
b.Insert(2);
b.Insert(6);
b.Insert(0);
b.Insert(9);
BSTree<int> bb(b);
b.InOrder();
int a[] ={ 5, 3, 4, 1, 7, 8, 2, 6, 0, 9 };
for (auto e : a)
{
b.Erase(e);
}
b.InOrder();
bb.InOrder();
system("pause");
return 0;
}
三、二叉搜索树的性能分析
插入和删除操作都必须查找,查找效率代表了二叉搜索树中各个操作的性能
对有n个节点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是树的深度,即树的深度越深,比较次数越多.
但对于同一个数据集合,如果数据插入的次序不同,可能得到不同的二叉搜索树。
最优的情况下,二叉搜索树为完全二叉树,其平均比较次数为:log2N
最差的情况下,二叉搜索树退化为单支树:N/2
这是就有一个问题,如果退化为单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插入关键码,都可以是二叉搜索树的性能最佳。