1450. 在既定时间做作业的学生人数

该博客介绍了如何解决LeetCode上的一个问题,即根据学生开始和结束作业的时间,计算在特定查询时间点正在作业的学生数量。解题方法包括使用差分法和二分查找法,通过遍历或搜索找到在查询时间点内活动的学生数量。
摘要由CSDN通过智能技术生成

1450. 在既定时间做作业的学生人数 - 力扣(LeetCode)


给你两个整数数组 startTime(开始时间)和 endTime(结束时间),并指定一个整数 queryTime 作为查询时间。

已知,第 i 名学生在 startTime[i] 时开始写作业并于 endTime[i] 时完成作业。

请返回在查询时间 queryTime 时正在做作业的学生人数。形式上,返回能够使 queryTime 处于区间 [startTime[i], endTime[i]](含)的学生人数。

示例 1:

输入:startTime = [1,2,3], endTime = [3,2,7], queryTime = 4
输出:1
解释:一共有 3 名学生。
第一名学生在时间 1 开始写作业,并于时间 3 完成作业,在时间 4 没有处于做作业的状态。
第二名学生在时间 2 开始写作业,并于时间 2 完成作业,在时间 4 没有处于做作业的状态。
第三名学生在时间 3 开始写作业,预计于时间 7 完成作业,这是是唯一一名在时间 4 时正在做作业的学生。

示例 2:

输入:startTime = [4], endTime = [4], queryTime = 4
输出:1
解释:在查询时间只有一名学生在做作业。

示例 3:

输入:startTime = [4], endTime = [4], queryTime = 5
输出:0

示例 4:

输入:startTime = [1,1,1,1], endTime = [1,3,2,4], queryTime = 7
输出:0

示例 5:

输入:startTime = [9,8,7,6,5,4,3,2,1], endTime = [10,10,10,10,10,10,10,10,10], queryTime = 5
输出:5

提示:

  • startTime.length == endTime.length
  • 1 <= startTime.length <= 100
  • 1 <= startTime[i] <= endTime[i] <= 1000
  • 1 <= queryTime <= 1000

解题思路

s[i]startTime的第i个元素,e[i]endTime的第i个元素,qqueryTime

则:

a n s = ∑ i = 0 n − 1 I ( s [ i ] ≤ q ≤ e [ i ] ) = ∑ i = 0 n − 1 I ( q ≥ s [ i ] ) − I ( q > e [ i ] ) = ∑ i = 0 n − 1 I ( q ≥ s [ i ] ) − I ( q ≥ e [ i ] + 1 ) = ∑ i = 0 n − 1 ( ∑ j = 0 q I ( j = s [ i ] ) − I ( j = e [ i ] + 1 ) ) = ∑ j = 0 q ( ∑ i = 0 n − 1 I ( j = s [ i ] ) − I ( j = e [ i ] + 1 ) ) = ∑ j = 0 q c n t [ j ] \begin{aligned} ans &= \sum\limits_{i=0}^{n-1}I(s[i]\leq q\leq e[i])\\ &= \sum\limits_{i=0}^{n-1} I(q\geq s[i]) - I(q>e[i]) \\ &= \sum\limits_{i=0}^{n-1}I(q\geq s[i]) - I(q\geq e[i]+1) \\ &= \sum\limits_{i=0}^{n-1}( \sum\limits_{j=0}^{q} I(j=s[i]) - I(j=e[i]+1))\\ &=\sum\limits_{j=0}^{q} (\sum\limits_{i=0}^{n-1}I(j=s[i])-I(j=e[i]+1)) \\ &=\sum\limits_{j=0}^{q} cnt[j] \end{aligned} ans=i=0n1I(s[i]qe[i])=i=0n1I(qs[i])I(q>e[i])=i=0n1I(qs[i])I(qe[i]+1)=i=0n1(j=0qI(j=s[i])I(j=e[i]+1))=j=0q(i=0n1I(j=s[i])I(j=e[i]+1))=j=0qcnt[j]

其中:

c n t [ j ] = ∑ i = 0 n − 1 I ( j = s [ i ] ) − I ( j = e [ i ] + 1 ) \begin{aligned} cnt[j] &= \sum\limits_{i=0}^{n-1}I(j=s[i])-I(j=e[i]+1) \end{aligned} cnt[j]=i=0n1I(j=s[i])I(j=e[i]+1)

遍历startTime数组,对cnt[startTime[i]]++, cnt[endTime[i]+1]--,可以得到cnt数组,对cnt累加从而得到结果,此即官方解答中的差分法.

另外:

c n t [ j ] = ∑ i = 0 n − 1 I ( j = s [ i ] ) − I ( j = e [ i ] + 1 ) = I ( j ∈ S t a r t T i m e ) − I ( j − 1 ∈ E n d T i m e ) \begin{aligned} cnt[j] &= \sum\limits_{i=0}^{n-1}I(j=s[i])-I(j=e[i]+1) \\ &= I(j\in StartTime) - I(j-1\in EndTime) \end{aligned} cnt[j]=i=0n1I(j=s[i])I(j=e[i]+1)=I(jStartTime)I(j1EndTime)

所以:

a n s = ∑ j = 0 q c n t [ j ] = ∑ j = 0 q I ( j ∈ S t a r t T i m e ) − I ( j − 1 ∈ E n d T i m e ) = u p p e r _ b o u n d ( s o r t e d S t a r t T i m e , q ) − l o w e r _ b o u n d ( s o r t e d E n d T i m e , q ) \begin{aligned} ans &= \sum\limits_{j=0}^{q} cnt[j] \\ &= \sum\limits_{j=0}^{q} I(j\in StartTime) - I(j-1\in EndTime) \\ &= upper\_bound(sortedStartTime, q) - lower\_bound(sortedEndTime, q) \end{aligned} ans=j=0qcnt[j]=j=0qI(jStartTime)I(j1EndTime)=upper_bound(sortedStartTime,q)lower_bound(sortedEndTime,q)

此即解答中的二分法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值