Depth-First Search

深度搜索和宽度搜索对立,宽度搜索是横向搜索(队列实现),而深度搜索是纵向搜索(递归实现);

看下面这个例子:

  现在需要驾车穿越一片沙漠,总的行驶路程为L。小胖的吉普装满油能行驶X距离,同时其后备箱最多能放下四桶油。在起点有N种汽油,每种汽油都有无限桶,一桶能行驶距离Ai。现在小胖想知道:能不能恰好带四桶油,再加上出发前装满的油,使得恰好能行驶L距离。

两个 恰好 使得这道题的难度增加;

如何才能做到恰好? 动态规划 还是 搜索?

先看看搜索行不行

限制条件是:“恰好四桶油”,“恰好行驶距离为L” 

那就一个一个的试试,深搜一把试试看

bool flag = false ;

void dfs( int tong , int s )  {

  if(tong > 4  || s > L)

    return ;

  if(tong == 4 && s == L)  {

    flag = true ;

    return ;

  }

  for(int i = 1 ; i <= n ; i++ )  // n 为汽油种类

    for(int j = 1 ; j <= 4 ; j++)

      dfs(tong + j , s + a[i] * j ) ;

}

如果能够找到 flag 就为 true ;

判断 flag 即可得出结果;

具体实现代码如下:

#include<iostream>
#include<string.h>
#include<string>
#include<algorithm>
using namespace std ;

int a[1005] ;

int L , X , N ;

int ans ;

void dfs(int a1 , int sum)	{
	if(a1 > 4 || sum > L - X)
		return ;
	if(a1 == 4 && sum == L - X)	{
		ans = 1 ;
		return ;
	}
	for(int i = 1 ; i <= N ; i++)
		for(int j = 1 ; j <= 4 ; j++)
			dfs(a1+j , sum + a[i] * j ) ;
}

int main()	{
	int n ; 
	cin >> n ;
	while(n--)	{
		cin >> L >> X >> N ;
		memset(a,0,sizeof(a[0])) ;
		for(int i = 1 ; i <= N ; i++)
			cin >> a[i] ;
		sort(a+1,a+1+n) ;
		ans = 0 ;
		dfs(0,0) ;
		if(ans)
			cout << "Yes" << endl ;
		else
			cout << "No" << endl ;
	}
	return 0 ;
}

  

很高兴总算找到答案了,但是不要忘了这个数据可能会很大,如果还用这个方法肯定会超时,如果一个算法速度达不到,这个算法是没有多大意义的。

 

那我们下面应该想想能不能用对程序进行优化,看到上面是不是有很多地方都是重复计算了,一般可以用多消耗一些内存换取程序运行的时间;

 

观察发现,当带四桶相同的油,多算了好多,既然是深度搜索,应该一直往深度探索,所以以上程序可修改为:

#include<iostream>
#include<string.h>
#include<string>
#include<algorithm>
using namespace std ;

int a[1005] ;

int L , X , N ;

int ans ;

void dfs(int i ,int a1 , int sum)	{
	if(a1 > 4 || sum > L - X)
		return ;
	if(a1 == 4 && sum == L - X)	{
		ans = 1 ;
		return ;
	}
	for( ; i <= N ; i++)
		for(int j = 1 ; j <= 4 ; j++)
			dfs(i+1,a1+j , sum + a[i] * j ) ;
}

int main()	{
	int n ; 
	cin >> n ;
	while(n--)	{
		cin >> L >> X >> N ;
		memset(a,0,sizeof(a[0])) ;
		for(int i = 1 ; i <= N ; i++)
			cin >> a[i] ;
		sort(a+1,a+1+n) ;
		ans = 0 ;
		dfs(1,0,0) ;
		if(ans)
			cout << "Yes" << endl ;
		else
			cout << "No" << endl ;
	}
	return 0 ;
}

  

就算如此优化,还是避免不了超时的结果,那还应该如何优化才能达到想要的结果呢,结果发现,还存在可以优化的地方,如果一桶汽油就可以跑完全程,那样的汽油就应该抛弃,通过先前对汽油种类排序,最后留下来的都是一桶跑不完全程的,当全程不能够分成四份时,那么同一种汽油最多取三桶;

通过分析再次对上面程序就行优化得到下面程序:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[1002];
int l,x,n,m;
int flag;
void dfs(int i,int count,int sum)
{
    int j;
    if(count>4||sum>l||flag)
        return;
    if(count==4&&sum==l)
    {
        flag=1;
        return ;
    }
    for(;i<n;i++)
        for(j=1;j<=m;j++)
            dfs(i+1,count+j,sum+j*a[i]);
}
int main()
{
    int t;
    int i,j;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d%d",&l,&x,&n);
        l=l-x;
        for(i=0;i<n;i++)
            scanf("%d",&a[i]);
        sort(a,a+n);
        for(i=0;i<n;i++)
            if(a[i]>=l)   //若第a[i]种汽油,一桶的行驶路程不小于l-x,后面的搜索情况不能满足题意,直接舍弃后面的数据
            {
                n=i;
                break;
            }
        m=4;
        if(l%4!=0)  //若l-x不能被4整除,每种汽油最多带3桶,可能满足题意
            m=3;
        flag=0;
        dfs(0,0,0);
        if(flag)
            printf("Yes\n");
        else
            printf("No\n");
    }
    return 0;
}

  

下面介绍一种用动态规划解答方案:

用 dp[ i ][ j ] 代表 带 i 桶汽油,恰好能行驶 j 公里,如果 dp[ 4 ][ L ] = true 则代表存在 ;

#include<iostream>
#include<string>
#include<string.h>
using namespace std ;
int main()	{
	int n ;
	cin >> n ;
	while(n--)	{
		bool dp[6][1005] ;      // dp[i][j]  带 i 桶汽油,恰好能行驶 j 公里
		memset(dp,false,sizeof(dp)) ;
		int L , X , N ;
		cin >> L >> X >> N ;
		int a[1005];
		for(int ii = 1 ; ii <= N ; ii++)
			cin >> a[ii] ;
		L = L - X ;
		dp[0][0] = true ;   //  带 0 桶汽油 , 恰好行驶 0 公里
		for(int i = 0 ; i <= L ; i++)             // 控制条件有两个时,主要判断哪个在前,哪个在后
			for(int j = 0 ; j <= 4 ; j++)	{
				if(dp[j][i])
					for(int k = 1 ; k <= N ; k++)	{
						if(i + a[k] <= L )
							dp[j+1][i+a[k]] = true ;	// 为动态变量赋值
					}
			}
		if(dp[4][L])
			cout << "Yes" << endl ;
		else
			cout << "No" << endl ;
	}
	return 0 ;
}

  

 

转载于:https://www.cnblogs.com/NYNU-ACM/p/4237447.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值