5大关键步骤!如何构建深度学习模型?

本文详细介绍了构建深度学习模型的五个关键步骤:定义架构,包括选择适合任务的CNNs或RNNs;编译模型,配置损耗、优化器和指标;拟合模型,在训练数据集上进行训练;评估和预测,确保模型性能和避免过拟合;以及部署模型,考虑在不同平台上应用。每个步骤都对模型的成功构建至关重要。
摘要由CSDN通过智能技术生成

深度学习的关注度正持续上升,它是机器学习的一个子领域,基于人工神经网络的概念来执行特定任务。然而在理论上,人工神经网络与人类大脑的运作方式并不相同,甚至都不相似!

它们之所以被命名为人工神经网络,是因为它们可以完成确切的任务,同时达到理想的精确度,而无需使用任何特定规则进行明确编程。

几十年前AI失败的主要原因是缺乏数据和计算能力。经过数年时间,这一情况已显著改善。基于大型科技巨头和跨国公司投资AI数据,数据的丰富程度已大大提高。而鉴于图形处理单元(GPUs)功能强大,计算能力也不再是挑战。

本文将详细讨论构建深度学习模型的五个基本步骤,以及如何使用这些步骤来处理各种深度学习项目。

1. 定义架构

深度学习是解决复杂任务的最优方法之一,例如图像分类或分割、人脸识别、目标检测、聊天机器人等。但是,对于每一个复杂的项目,深度学习模型均需进行五个固定步骤以完成当前任务。

构建深度学习模型的第一步,也是最重要的一步就是成功定义网络和架构。根据所执行任务的类型,一般倾向于使用特定类型的体系结构。

通常,对于计算机视觉任务,如图像分割、图像分类、面部识别和其他类似项目,首选卷积神经网络(CNNs)或ConvNets。而对于自然语言处理和与文本数据相关的问题,递归神经网络(RNNs)和长短期记忆(LST

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值