总结
文章平均质量分 72
披着羊皮的程序猿
这个作者很懒,什么都没留下…
展开
-
CS224n Assignment4解读 · 上
NMT中的一个问题 problem: 输入的句子长短不一,如果要将所有的长短的输入都提炼为同样长度的向量,是比较难的。 solution: 实际工程中较多的会通过堆叠RNN来解决不定长的input sentences的问题 CS224n Assignment4: 通过找出最长的句子,再将其他所有的句子都扩充至这一长度来达到input sentences等长的效果。 python文档 Library Reference标准库参考:标准库中的API在这里有定义和注释 Language Referen原创 2021-03-24 22:00:22 · 630 阅读 · 0 评论 -
CS224n-2019 -《Neural Machine Translate, seq2seq with Attention》
CS224n-2019的第八讲《Neural Machine Translate, seq2seq with Attention》 Machine Translate历史 Statistics MT这是基于统计的机器翻译,核心思想是最大化一个概率分布,最终拆分成两个部:一是翻译模型,二是语言模型。(这块没有弄懂)其中需要大量的人工操作,非常的复杂。之前的google翻译就是基于SMT的。 Neural MT这是一个seq2seq结构,单个神经网络,使用到了两个RNN网络。 NMT神经网络结构原创 2021-03-23 21:57:45 · 203 阅读 · 0 评论 -
RNN 梯度消失梯度爆炸 变体
20210322总结 Linux系统上pytorch环境的配置 需要GPU的时候,在具备GPU硬件的前提下,首先需要下载GPU相应版本的驱动程序(diver)以及CUDA。CUDA可以理解为GPU相关的API,pytorch能够自动调用这些接口来应用GPU。cat /usr/local/cuda/version.txt可以查看已安装CUDA的版本。 安装torch、torchvision、torchaudio库。这一步在pytorch的官网会提供不同版本相应的命令,主页默认为最新的版本,如果需要旧版本,原创 2021-03-22 20:41:14 · 259 阅读 · 0 评论 -
《Graph Convolutional Network with Sequential Attention for Goal-Oriented Dialogue Systems》总结
20210318总结 论文《Graph Convolutional Network with Sequential Attention for Goal-Oriented Dialogue Systems》(应用顺序注意力的图神经网络在任务型对话系统中) 单领域的对话系统有三种输入: 该领域相关的知识库 对话历史,这是一系列的自然语言表达 用户最新的回复,这也是自然语言表达,通常叫做Query因为要根据这个条件来生成系统回复 本篇文章关注的两个亮点 知识库中实体之间的关系,这是一张知识图谱 对话自然原创 2021-03-18 21:40:37 · 173 阅读 · 0 评论 -
《Schema-Guided Multi-Domain Dialogue State Tracking with Graph Attention Neural Networks》总结
每天小结 多领域对话系统槽值的稀疏型问题: 由于领域增多槽位随之增加,导致槽值之间的组合情况明显增多。直观上来看就是分母变大了,而实际上槽值的组合情况并没有那么多,相当于分母成指数型增长,但分子成线性增长,造成稀疏性问题。如果说不考虑槽位之间的联系,独立预测槽位的值就会导致所有可能的情况(分母)为各个槽值个数相乘的结果。 LSTM & GRU LSTM长短期循环网络:遗忘门、输入门、输出门 GRU:重置门、更新门 残差项 残差项就是加一个数(比如解决梯度消失的问题可以通过加入一个小的数值来原创 2021-03-17 20:59:14 · 454 阅读 · 3 评论