【原】斐波那契质数(Fibonacci Prime)详解

斐波那契质数是指与所有较小的斐波那契数互质的数。除了F(3)和F(4),第k个斐波那契质数对应质数数列中的第k个数。证明涉及余数和同余关系,揭示了只有当斐波那契数的项数为质数时,该数才可能是斐波那契质数。反例包括F(5)和F(4),它们不遵循这一规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fibonacci数大家一定很熟悉了:

    clip_image002

    clip_image004

    clip_image006

 

Fibonacci质数的定义:

    若某Fibonacci数与任何比它小的Fibonacci数互质,那么它就是Fibonacci质数。

 

但是哪些的Fibonacci数才是Fibonacci质数呢?这里先给出结论:

    1. F(3)和F(4)是Fibonacci质数;从F(5)开始,某项为Fibonacci质数当且仅当它的项数为质数

    2. 第k小的Fibonacci质数是以质数数列中的第k个数为项数的Fibonacci数( 除F(3)和F(4)之外 )

 

证明如下:

证明任何与“互质”有关的问题,可以从余数入手,因此考察所有数除以M(M任意)的余数所组成的序列 : clip_image002[11]

所有数除以相应的某些M(M≠1)都可以余数为0,因此我们的M从这些数种选取。

此时 clip_image002[13],假设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值