#Paper Reading# A Unified Search Federation System Based on Online User Feedback

论文题目: A Unified Search Federation System Based on Online User Feedback 论文地址: https://dl.acm.org/citation.cfm?id=2488198 论文发表于: KDD 2013(CCF A类会议) 论文...

2019-01-16 12:07:08

阅读数:30

评论数:0

#Paper Reading# A Survey and Empirical Analysis of Beyond-Accuracy Objectives in Recommender Systems

论文题目: Diversity, Serendipity, Novelty, and Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives in Recommender Systems 论文地址: https...

2019-01-14 16:43:26

阅读数:29

评论数:0

#Paper Reading# Modeling Impression Discounting in Large-scale Recommender Systems

论文题目: Modeling Impression Discounting in Large-scale Recommender Systems 论文地址: https://dl.acm.org/citation.cfm?id=2623356 论文发表于: KDD 2014(CCF A类会议) ...

2018-12-26 18:41:51

阅读数:11

评论数:0

#Paper Reading# Learning to Selectively Transfer:Reinforced Transfer Learning for Deep Text Matching

论文题目:Learning to Selectively Transfer: Reinforced Transfer Learning for Deep Text Matching 论文地址:https://doi.org/10.1145/3289600.3290978 论文发表于:WSDM 20...

2018-12-12 23:59:43

阅读数:24

评论数:0

#Paper Reading# Towards Enabling Binary Decomposition for Partial Label Learning

论文题目:Towards Enabling Binary Decomposition for Partial Label Learning 论文地址:http://cse.seu.edu.cn/people/zhangml/files/IJCAI'18.pdf 论文发表于:IJCAI 2018(C...

2018-12-08 20:13:26

阅读数:39

评论数:0

#Paper Reading# Joint Matrix Factorization and Manifold-Ranking for Topic-Focused Multi-Document Sum

论文大体内容: 本文将矩阵分解与流形排序(Manifold-ranking)组合起来,得到JMFMR的新模型,用于多文档摘要(extractive式),通过实验发现取得了不错的效果。

2017-07-01 18:48:43

阅读数:410

评论数:0

#Paper Reading# Manifold-Ranking Based Topic-Focused Multi-Document Summarization

论文大体内容: 本文将流形排序(Manifold-ranking)应用到多文档摘要(extractive式)中,通过实验发现取得了不错的效果。

2017-07-01 17:58:49

阅读数:586

评论数:1

#Paper Reading# Abstractive Sentence Summarization with Attentive Recurrent Neural Networks

论文大体内容: 本文使用一种conditional RNN来生成摘要,条件是卷积注意力模型(convolutional attention-based encoder),用来确保每一步生成词的时候都可以聚焦到合适的输入上。模型仅仅依赖于学习到的features,并且很容易在大规模数据上进行end2...

2017-06-11 09:19:03

阅读数:1103

评论数:0

#Paper Reading# A Neural Attention Model for Abstractive Sentence Summarization

论文大体内容: 本文提出了一种data-driven的方法来做句子摘要,使用了一种基于局部注意力模型(local attention-based model),在给定输入句子的情况下,生成摘要的每个词。本文提出的模型结构简单,可以套用流行的end2end框架来训练,并且很容易扩展到大型训练数据集上...

2017-06-04 00:49:25

阅读数:441

评论数:0

#Paper Reading# Neural Extractive Summarization with Side Information

论文大体内容: 这篇通过增加side information(title, image caption)到单文档抽取式自动文本摘要中,使用层次式的document encoder和attention-based extractor的方法,在覆盖的信息量以及流畅性上面比没加side informat...

2017-05-08 14:58:20

阅读数:841

评论数:0

#Paper Reading# SummaRuNNer: A RNN based Sequence Model for Extractive Summarization of Documents

论文大体内容: 这篇文章提出了一个基于GRU-RNN的模型,来完成抽取式自动文本摘要任务。通过与其它state-of-the-art的结果相比,发现这种方法能够达到更好的效果。

2017-04-24 00:27:41

阅读数:1171

评论数:1

#Paper Reading# Summarizing Answers in Non-Factoid Community Question-Answering

论文大体内容: 本文主要解决non-factoid的CQA(community question-answering)问题,通过改善shortness,sparsity,diversity共3大问题,提升自动文本摘要的效果。

2017-04-09 09:28:13

阅读数:521

评论数:0

#Paper Reading# Recent Advances in Document Summarization

论文大体内容: 这是PKU万小军老师团队写的关于自动文本摘要技术最近几年发展的概况。作者认为,好的文本摘要,必然是与主题关联的,不冗余的,可读性好的。本文总结了近几年(2011-2016)自动文本摘要技术的一些新方法,同时,本文还概述了未来自动摘要的发展方向。

2017-04-02 16:15:25

阅读数:780

评论数:0

#Paper Reading# Multi-Document Summarization via Sentence-Level Semantic Analysis and SMF

论文大体内容: 本文提出一个基于sentence level的语义分析(SLSS)与对称NMF(SNMF)的多文档摘要方法,能够更好的考虑语义层面的关系,已达到一个更好的效果。

2017-03-19 08:55:02

阅读数:375

评论数:0

#Paper Reading# SumView: A Web-based engine for summarizing product reviews and customer opinions

论文大体内容: 本文主要使用了NMF来做文本摘要,实现了一个能够自动根据用户关心的Amazon商品的某些特点(比如prize,size,quality等),通过爬取商品评论,并生成对应的文本摘要的系统。

2017-03-04 00:05:13

阅读数:387

评论数:0

#Paper Reading# Multi-document Summarization Based on Cluster Using Non-negative Matrix

论文大体内容: 本文提出一个基于NMF与K-Means聚类,进行多文档自动摘要(extraction)的模型,这个模型因为使用了NMF,能够使得抽取出来的句子能够更加贴近一个给定的主题,从而提升自动文档摘要的质量。

2017-02-26 16:00:58

阅读数:338

评论数:0

#Paper Reading# Curriculum Learning

论文大体内容: 本文考虑到人的学习,学的是经过组织的知识,才能学习得更快。那么对应到机器学习,是否能够通过改变学习的顺序(对知识进行简单的组织),提升机器学习的效果呢?本文经过实验,发现这确实是一个可行的思路,改变学习的顺序,能对学习的速度和质量进行提升。

2017-02-18 15:43:46

阅读数:4934

评论数:0

#Paper Reading# Active Task Selection for Lifelong Machine Learning

论文大体内容: 本文针对ELLA[1][2]算法,提出一种主动选择下一个要学习的task的策略,通过主动的选择,已达到更好的整体效果。本文motivation主要在active task selection + lifelong machine learning。

2017-01-07 17:54:29

阅读数:1053

评论数:0

#Paper Reading# Dual Learning for Machine Translation

论文大体内容: NMT(neural machine translation)机器翻译模型所需标注的训练数据量特别大的问题,但大量的人工标注的训练数据往往意味着大量的花费,因此本文针对这一问题,提出一个对偶模型,dual-NMT,能够使用unlabel的数据也能达到一个很好的效果。

2016-12-22 11:50:52

阅读数:1329

评论数:0

#Paper Reading# Toward an Architecture for Never-Ending Language Learning

论文大体内容: 本文构建出一个NELL(never-ending language learner)的framework,主要能够从web中永不停地抽取信息,构建Knowledge base,然后使用知识不断提升之后task的效果。最后经过67天的实验,NELL抽取出了242000+个belief...

2016-12-11 15:46:54

阅读数:823

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭