- 博客(6)
- 收藏
- 关注
原创 MGSCA(基于多尺度梯度选择的耦合超球自适应无监督路面缺陷检测 )
Dual双门控前向网络增强了自适应模块的非线性建模能力,而Axis基于轴的自关注特征描述子从水平方向和垂直方向计算像素之间的相关性,为自适应特征提供丰富的全局语义信息。为分离损失,通过最小化分离损失函数的损失函数,自适应模块的参数倾向于使近分布缺陷远离超球边界,从而提高了真实路面场景中的缺陷检测性能。表示第i张图片的j层特征,D为自适应特征模块,L为拉普拉斯算子(此算子相对于其他的更能感应纹理信息).然后为了。根据代表性记忆库构造的超球C的中心,我们用K个最近的中心对超球进行建模,其中r为超球的半径。
2024-03-24 22:49:14 720
原创 深度随机森林——异常检测
使用包含n个数据对象的子集作为根节点的数据池,根节点是从整个数据集中随机抽取的。iTree τ 通过以自上而下的方式递归隔离叶节点中的数据对象(即,将数据对象不相交地划分为两个子节点)来增长,直到节点中保留一个数据对象或达到最大深度限制。iForest中的标准异常评分过程只使用遍历路径的长度,即所有节点都被认为具有相同的重要性。这些偏差程度是隔离难度的重要指标,因为新创建的数据空间中的特征值通常是密集分布的。第一项是iForest中异常分数的平均深度,第二项是我们引入的基于偏差的异常分数。
2023-07-23 22:05:49 621 2
原创 OW-ORF(最优权重一类随机森林)
的,在这种方法中,设备通过在必要时相互共享其模型而不是数据来协同做出原位决策。来抵御信息交换的风险,该机制在没有监督的情况下确定模型的有用性。为了解决设备和环境的不可靠性质,我们的方法使用无。为了解决有限的计算和连接问题,我们的方法是。
2023-06-27 11:50:20 304
原创 GAAL(生成对抗主动学习)
异常值具有与正态数据显著不同的特征,并且异常值和正态数据之间的类分布极不平衡。我们在原数据空间引入了一个均匀分布μ,并通过相对于μ的相对密度ρ(x),定义了x的浓度。密度小于阈值t时,样本是异常值。但计算资源大,所以分类代替密度。由参考分布生成的n个数据点作为潜在异常值为分类提供更多的信息。
2023-06-11 20:30:53 271 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人