二叉树

本章学习一种非线性数据结构—树,数据元素之间是一种层次关系,元素有且只有一个前驱,但可以有多个后继。

一个数据元素 :一个结点。

数据元素(结点)之间的关系 :分支。

1、 树( Tree ): n(n>=0)个有限元素的集合,元素之间具有如下关系:有且仅有一个特殊元素,它没有前驱 (称为树根Root),其余元素都有且仅有一个前驱,所有元素可以有零个或多个后继。

递归描述为:树T是n个(n>=0)结点数据元素的有限集合,其中有且仅有一个特定元素称为树T的根,剩余元素(若存在)可被划分为 m 个互不相交的集合 T1,T2..., Tm,而每个集合又都是树,称为T的子树( Subtree ) 。

设子树的根为 r1,r2, ... ,rm ,则root是r1,r2,...,rm的前驱,r1,r2,...rm是root的后继。

树(逻辑上)的特点

1. 有且仅有一个结点没有前驱结点,该结点为树的根结点。

2. 除了根结点外,每个结点有且仅有一个直接前驱结点。

3. 包括根结点在内,每个结点可以有多个后继结点。

2、树的特点:

除根外,每个元素有且仅有一个前驱,有零个或多个后继。

3、树的数据结构定义

Tree=( D,R )

D={ai | i=1,2,...,n n?1   ai?D0 }

   ={ root } ?{ D-{root} }

R={ H }

H= < root, ri> |Ti=(Di, Ri) Di={ri} ?{Di-{ri}}1?i ?m m?1 ? m=0  (只有根结点)

1. 结点的度(degree):该结点拥有的子树的数目,记作 d(v)。

2. 树的度:树中结点度的最大值。

3. 叶结点(leaf):度为0 的结点,又称为末端结点。

4. 分支结点: 度非0 的结点,又称为末端结点。

5. 层次的定义: 根结点为第一层,若某结点在第i 层,则其孩子结点(若存在)为第i+1层。

6. 树的深度: 树中结点所处的最大层次数。

7. 树林(森林): m>=0 棵不相交的树组成的树的集合。

8. 树的有序性:若树中结点的子树的相对位置不能 随意改变, 则称该树为有序树,否则称该树为无序树。

9.孩子 :结点的子树的根称为该结点的孩子(后继)。

10.双亲(父亲):相应的该结点称为孩子结点的双亲。

11.兄弟(sibling):具有相同双亲的结点。

12.祖先 :从根结点到该结点路径上所有结点都称为该结点的祖先。

13.子孙:该结点所有子树上的结点都称为该结点的子孙。

14.堂兄弟:双亲在同一层上的结点。

路径:树中的k个结点n1,n2,...,nk,满足 ni是 ni+1的双亲,称n1到nk有一条路径。

路径长度:分支数 = 路径上结点个数 - 1

注意:根没有双亲,叶子没有孩子;vi是vj的双亲,则 L(vi)=L(vj)-1;

有序树和无序树的区别;

 1、直观表示法:

用圆圈表示结点,元素写在圆圈中,连线表示元素之间的关系根在上,叶子在下(即树向下生长)。

2、集合表示法:根据树的集合定义,写出集合划分。{ a, {b,{e},{f}}, {c}, {d,{g}} }

3、文氏图表示法:集合表示的一种直观表示,用图表示集合。

4、目录表示法将一棵树描述为一本书,书-章-节-小节-

5、广义表表示法:将一棵树描述为一个广义表,根作为由子树森林组成的表的名字写在表的左边。( a(  b(e,f) ,  c,   d(g)  )   )

人们最常用的是第一种,但是不适合计算机!

1、初始化Create( T ):创建空树

2、求树的根结点 Root( T )

3、求某结点的双亲 Parent(T , cur_e)

4、求某结点的最左孩子 Left_Child(T , cur_e)

5、求某结点的右兄弟 Right_Sibling(T , cur_e)

6、求深度 Depth(T)

7、遍历 Traver(T):将树中结点访问而且仅访问一遍。

8、插入子树InsertChild(&T,&p,i,c )操作结果:插入c为T中p所指结点的第i棵子树

9、删除DeleteChild(&T,&p,i)操作结果:删除T中p所指结点的第i棵子树

一、树的存储结构之一(双亲存储)

1、存储方式:用任意空间单元来存放树的各个元素,在存放元素的同时,还存放该元素的双亲的存储位置。可以用顺序存储,也可以用链式存储。

一、树的存储结构之一(双亲存储)

存储地址;data ,双亲地址

2、特点:求双亲容易O(1),找祖先也容易;但求孩子难!

3、虚拟实现:

树的双亲表存储表示

#define MAX_TREE_SIZE     100

typedef   struct   PTNode

                   {  TElemType   data;

                       int   parent;   //双亲位置域

                   }  PTNode;

 typedef    struct

                  {   PTNode  nodes[MAX_TREE_SIZE];

                       int   n;  //结点数

                  }  PTree;

树的存储结构之二(孩子存储)

1、存储方式:用连续空间单元来存放树的各个元素,在存放元素的同时,还存放该元素的所有孩子的存储地址(链表)。

存储地址Data,sonlink(sonp,next)

其中:data:数据元素值;sonlink:指针,第1个孩子结点;sonp:孩子的存储位置;next:下一个孩子结点。

2、虚拟实现:

typedef    struct

{ CTBox   nodes[MAX_TREE_SIZE];

   int     n,r;   //结点数和根的位置

} CTree;

 typedef   struct

  {   TElemType    data;

       ChildPtr    firstchild ; //孩子链表头指针

  }   CTBox ;                

 可以将双亲、孩子存储方式合起来!

Parent data sonlink sonp next

1、  存储方式:用任意空间单元来存放树的各个元素,在存放元素的同时,还存放该元素的各个孩子的存储地址。

不定长结点: data c1 c2 …… cdi

Data:数据元素。C1,c2…..,cdi:指针指向各孩子结点的指针。Di:结点的度。

定长结点:data c1 c2 …….cd

Data 数据元素。C1,c2,…cd指针,指向各孩子结点的指针。D:树的度

空指针的个数n*d-(n-1)=9*3-8=19

树的存储结构之四(左孩子右兄弟存储)

1、存储方式:用任意空间单元来存放树的各个元素,在存放元素的同时,还存放该元素的第1个孩子的存储地址和右兄弟的存储地址。

data:数据元素值。fch:指针,指向其第1个孩子结点。nsib:指针,指向其右兄弟结点。

2、特点:便于实现除求父结点之外的各种操作

3、虚拟实现:

//-----树的二叉链式(左孩子-右兄弟)表示-------

Typedef     struct  CSNode

  { ElemType     data;

    struct  CSNode   *firstchild, *nextsibling;

  } CSNode,*CSTree;

1、二叉树( Binary Tree ): 是一个有限元素的集合(可以空),它或者是空(空二叉 树),或者由一个称为根的元素以及分别称为左子树和右子树的两个互不相交的集合组成,这两个集合又都是二叉树。

2、二叉树的特点(与树的区别):二叉树有两棵子树(可以为空),而树可以有多棵;二叉树是有序树(子树有左右之分),而树是无序树;二叉树结点的度最大是2

3、二叉树的数据结构描述

Binary-Tree=( D,R )

D={ai | i=1,2,...,n n?0   ai?D0 }

   ={ root }?Dl ? Dr    root ?D0        Dl?Dr= ?

R={ LH,RH }

             < root, rl>       |   Tl=(Dl, Rl)        

   LH              

             < root, rr>       |   Tr=(Dr, Rr)        

   RH  

性质1:二叉树的第 i 层上至多有 2^(i-1) 个结点(i>=1)

性质2:深度为 k的 二叉树至多有 2k -1个结点(k>=1)

性质3:对任意一棵二叉树T,如果其叶子数为n0,度为2的结点数为n2,  则 n0=n2+1

证明:  设度为1的结点数为n1,总结点数为n

?  n=n0+n1+n2

设分支数为B,则 B=n-1=n0+n1+n2-1

又 B=n0*0+n1*1+n2*2

n0*0+n1*1+n2*2=n0+n1+n2-1

?  n0=n2+1

n2=n0-1其他1:高度为 h 的二叉树至少有 h 个结点

其他2:含有 n (n>=1)个结点的二叉树的高度至多为 n

其他3:含有 n (n>=1)个结点的二叉树的高度至多为n,最小为log2(n+1)向上取整

 [ 满二叉树  full binary tree ] 

  高度为 k 的二叉树,若具有 2k-1 个结点,称为满二叉树。

对二叉树结点按逐层从上到下、每层从左向右进行编号,于是每个结点都有一个序号。

[ 完全二叉树 complete binary tree ] 假设二叉树具有 n 个结点,对二叉树的结点进行编号,若二叉树各结点与深度相同的满二叉树中编号相同的 1~n 个各结点一一对应,则称为完全二叉树。

完全二叉树的特点:只有最后一层是不满的,不满层的结点首先出现在左边;至多只有最下面的两层结点的度小于2;

任何结点的左子树的高度不会小于右子树的高度,且左、右子树高度最大相差1;

叶子只能出现在最后两层上

性质4:具有 n 个结点的完全二叉树,其深度为 ?log2n? +1, 或为élog2(n+1) ù

证明: 设其深度为 k , 于是,该二叉树最大为深度为k的满二叉树

?  n<= 2^k-1

又根据深度为k-1的二叉树可得  n> 2^(k-1)-1

2^(k-1)-1<=n2^k-1

?2^(k-1)-1+1 <=n < 2^k-1+1  即  2^(k-1)<=n < 2^k

两边取对数  ?  k-1 <= log2n <k    

由于 k 是整数  ?  k-1<= log2n

?  k-1 =? log2n ??

?  k= ? log2n ? +1

性质5:如果对一棵具有 n 个结点的完全二叉树的结点进行编号,则对任一结点 i  (1<= i? <=n) 有:

(1) 若 i =1 ,则该结点是二叉树的根,无双亲;否则,其双亲结点的编号为?i/2?              (2) 如果 2i>n 则结点 i 没有左孩子,否则,其左孩子的编号为 2i

(3) 如果 2i+1>n 则结点 i 没有右孩子,否则,其右孩子的编号为 2i+1

证明: 对 i 进行归纳 ,先证明(2)、(3)i=1 ,显然 左子树编号为 2 ,右子树编号为 3 显然成立

i>1 时,

结点i、 i+1在同一层上

结点i、 i+1不在同一层上

1、顺序存储方式:用地址连续的空间单元来存储二叉树的各个元素,但为了表示关系,元素存放时,首先确定一个序号,该序号是对二叉树按完全二叉树形式编号而得,编号为 i 的存放在第i 个位置

2、特点:层次关系非常明确,双亲 i/2 、孩子 2i、 2i+1 但是,插入、删除需移动元素;空间效率低适合完全二叉树,最差情况是右斜树

3、虚拟实现:

//----二叉树的顺序存储表示---------

#define MAX_TREE_SIZE     100  //二叉树最大结点数

typedef   TElemType    SqBiTree[MAX_TREE_SIZE];

                                     //0号单元存放树根结点

SqBiTree    bt ;

二、操作的虚拟实现

二叉树在顺序存储结构时,对于求双亲、孩子等操作是很容易的,但是应首先确定元素的存储位置。

二叉树的链式存储有多种形式,常用的是二叉链式和三叉链式。

一、二叉链式存储结构

1、存储方式:用任意的空间单元来存储二叉树的各个元素,在存储元素时,同时也存储其左、右孩子的地址(关系)。

lson指向左儿子;Data数据元素;rson指向右儿子

2、特点:占用空间不随树的形态而变化。n 个结点的二叉树,占用空间为:n*(存储一个元素的空间+2*存储一个指针的空间)

对求孩子操作易,但求双亲难

插入、删除元素不需移动,但调整指针多;

空指针多;

3、虚拟实现:

Typedef struct  BiTNode

  {  TElemType           data;

      struct  BiTode    *lchild, *rchild;  //左右孩子指针

  }  BiTNode, *BiTree;

二、三叉链式存储结构

1、存储方式:用任意的空间单元来存储二叉树的各个元素,在存储元素时,同时也存储其双亲、左、右孩子的地址(关系)。

ldon指向左儿子;数据元素data;指向双亲结点parent;指向右儿子rson

2、特点:具有二叉链式存储的特点,求双亲也易.

3、虚拟实现:

Typedef struct  BiTNode

{      TElemType           data;

        struct  BiTode    *lchild,  *rchild, *parent;   

                                   //左右孩子及双亲结点指针 

}     BiTNode, *BiTree;

一、遍历操作

1、遍历( Traversal ):把二叉树中的所有结点访问且仅访问一次,又称为扫描。

2、遍历方式:由于元素之间的关系复杂了,按什么样的顺序访问数据元素?

广度优先遍历;深度优先遍历.

3、广度优先遍历:又称为层次遍历,从第1层开始,逐层访问二叉树的元素,每一层从左向右。

先访问的元素,它们的孩子结点也先访问!

void    leverorder( BiTree   T)

{  LinkQueue     Q;          // 定义队列Q为LinkQueue类型

    InitQueue (Q)              // 初始化队列

    InsertQueue(Q,T)       // 根结点入队

    while(Q)                       // 队列非空

       {  visit (Q->front) ;

             if  ( Q-> front ->lchild!=NULL)

                  { InsertQueue  (Q,Q->front->lchild);}

             if  ( Q->front->rchild!=NULL)

                  { InsertQueue(Q,Q->front->rchild);}

             DeleteQueue  (Q->front);

        }

}

4、深度优先遍历:

基本思想是:按某种原则访问一个元素,由于它与多个元素有关系(1个前趋、2个后继),同样原则选择下一个元素继续访问。

假设一棵树表示为根(D)、左子树(L)、右子树(R)则,它们的顺序关系有3!=6种:

前序遍历(DLR):访问根;前序遍历左子树;前序遍历右子树;

中序遍历(LDR):中序遍历左子树;访问根;中序遍历右子树;

后序遍历(LRD):后序遍历左子树;后序遍历右子树;访问根;                                   

遍历序列:按某种方式遍历二叉树的元素,得到的元素序列

前序遍历算法:

void  PreOrderTraverse( BiTree T)

{    if (T==NULL)   return ;

      Visit(T->data);

      PreOrderTraverse(T->lchild);

      PreOrderTraverse(T->rchild); 

 }

递归定义当左子树未遍历完就不能够进行右子树的遍历!

中序遍历算法:

void  InOrderTraverse( BiTree T)

{    if (T==NULL)   return ;

     InOrderTraverse(T->lchild);

     Visit(T->data);

     InOrderTraverse(T->rchild); 

 }

后序遍历算法:

void   PostOrderTraverse( BiTree T)

{    if (T==NULL)   return ;

     PostOrderTraverse(T->lchild);

     PostOrderTraverse(T->rchild); 

     Visit(T->data);

}

5、算术表达式的二叉树表示及前、后缀形式

(1)算术表达式表示为二叉树若表达式为常数、简单变量,则二叉树只有根,数据元素为常数或变量;否则,表达式可以写成:<表达式>=<表达式1> <算符> < 表达式2>于是,二叉树的根是<算符> ,根的左子树由<表达式1>形成,根的右子树由< 表达式2> 形成;

(2)算术表达式的前缀、后缀形式:

前缀:前序遍历表达式的二叉树,得到的前序遍历序列是表达式的前缀形式。

后缀:后序遍历表达式的二叉树,得到的后序遍历序列是表达式的后缀形式。

前序遍历非递归算法

void  PreOrder(BiTree  t)

{     InitStack(S);

           if(t==NULL)   return;

      Push(S,t);   //根入栈

       while(!StackEmpty(S))

              {     Pop(S,p);

                     Visit(p->data);

                     if(p->rchild!=NULL)

                            Push(S,p->rchild);

                     if(p->lchild!=NULL)

                            Push(S,p->lchild);

              }                      

}

中序遍历非递归算法

Status  InOrderTraverse( BiTree   t )

{     InitStack(S);   p=t;

       while(p||! StackEmpty(S))

       {  if(p)

              {Push(S,p); p=p->lchild;}

          else

              { Pop(S,p);

                Visit(p->data);

                p=p->rchild;

              }

       }

         return ok;

}

 

二、二叉树的插入与删除操作

在二叉树中进行插入、删除操作,若简单的描述为“在二叉树的某个位置插入(删除)一个结点”,是无法进行操作的因为,它涉及前驱(1个)和后继(2个)的调整,不象线性表那么简单!

除了知道在哪个位置插入、删除外,一般遵循两个原则:

(1)、插入、删除后如何调整 ——对一般二叉树

(2)、达到某种性质(或保持某种性质)——对特殊二叉树

1、插入:插入一个数据元素Y,使之成为数据元素X的左儿子,而原来X的左儿子成为Y的左儿子。

方法:找到数据元素X,采用广度、深度遍历均可生成插入结点;插入并调整;

1.  开辟新结点用来存放y数据

2.  y->lchild=x->lchild 

3.  x->lchild=y

2、删除:删除数据元素为X的结点,使其左孩子成为其双亲的孩子结点,X原来的右孩子成为X原来左孩子的最右下孩子

方法:找到数据元素X,可采用广度、深度遍历均可(由于涉及元素X的双亲,所以要得到指向双亲结点的指针);得到指向X左、右儿子的指针;删除元素X结点;安置好左、右儿子

遍历找到X由指针p指着,其双亲由f指着,其左孩子由r指;

           f->rchild=p->lchild

       或 f->lchild=p->lchild;

            r =p->lchild;

            while  ( r->rchild!=NULL )

            r = r->rchild;

            r->rchild=p->rchild;

            free(p);

三、二叉树的建立

1、根据二叉树的结构直接生成

方法:逐个生成各元素结点,连接指针;

p1  =( BiTNode *) malloc (sizeof ( BiTNode));

p2  =( BiTNode *) malloc (sizeof ( BiTNode));

p3  =( BiTNode *) malloc (sizeof ( BiTNode));

p4  =( BiTNode *) malloc (sizeof ( BiTNode));

p1->data=‘a’;   p1->lchild=p2; p1->rchild=p3;

p2->data=‘b’;   p2->lchild=NULL ; p2->rchild=NULL;

p3->data=‘c’;   p3->lchild=p4 ; p3->rchild=NULL;

p4->data=‘d’;   p4->lchild=NULL ; p4->rchild=NULL;

2、已知能唯一确定一棵二叉树的序列,创建二叉树。

并不是任何的一个元素序列能够确定一棵二叉树,因为,序列中不能反映出元素之间的关系!

(1)已知完全前序序列,确定一棵二叉树;

对扩展二叉树进行前序遍历,即得到完全前序序列!(1)已知完全前序序列,确定一棵二叉树;

[二叉树的完全前序序列]     

若二叉树为空,则序列为:可以用其他符号表示)

否则,序列为:<根元素><左子树的完全前序序列><右子树的完全前序序列>

创建二叉树:

若完全前序序列为空,则二叉树为空;

否则

完全前序序列的第1个元素是根 ,生成根结点,

左子树的完全前序序列生成左子树;

右子树的完全前序序列生成右子树

Status  CreateBiTree( BiTree  &T)

{  // 按先序次序输入二叉树中结点的值,空格字符表示空树

   // 构造二叉链表表示的二叉树T

      scanf(&ch);

      if(ch==‘ ’)   T=NULL;

         else

          {   if (! ( T=(BiTNode *) malloc (sizeof(BiTNode))))

                   exit(OVERFLOW) ;

              T->data=ch;           //生成根结点

              CreateBiTree(T->lchild);  //构造左子树

              CreateBiTree(T->rchild);  //构造右子树

          }

      return    OK;

}

(2)已知二叉树前序遍历序列和中序遍历序列,确定一棵 二叉树;

二叉树的存储结构及操作的虚拟实现

算法思路

     采用递归的方法构建二叉树。设先序序列和中序序列

分别存放在数组pre[c1..d1]和ino[c2..d2]中。

1、建立二叉树的根结点*t,t->data=pre[c1];

2、在中序序列中查找根结点的位置k,得知左子树的结点个数

   为k-c2;左子树的先序序列中最后一个结点(左子树最右下

   结点)的位置i=c1+k-c2;

3、若k=c2,则左子树为空,否则左子树在先序序列中的位置为

   c1+1..i,左子树在中序序列中的位置为c2..k-1,递归构造

   其左子树。

4、若k=d2,则右子树为空,否则右子树在先序序列中的位置为

   i+1..d1,右子树在中序序列中的位置为k+1..d2,递归构造

   其右子树。

#define maxsize 50  //预定义二叉树结点的最多个数

//此处定义的二叉链表结点类型Bitnode,二叉树类型Bitree

Bitree  binary_t(char pre[ ],char ino[ ],int c1,int c2,int d1,int d2)

//由二叉树的先序序列和中序序列确定一棵二叉树的递归算法

 {  t=NULL;

    if(d1>=c1)

     { t=(Bitree)malloc(sizeof(Bitnode));

        t->data=pre[c1];

        k=c2;

        while( ino[k]!=pre[c1] )

        k++;  //查找根在中序序列中的位置

        i=c1+k-c2;

        if(k==c2)   t->lchild=NULL;//k=c2时左子树为空

         else   {  p=binary_t(pre,ino,c1+1,i,c2,k-1) //否则建立左子树

                       t->lchild=p; //与根链接  }

        if(k==d2)   t->rchild=NULL;//k=d2时右子树为空

         else   {  p=binary_t(pre,ino,i+1,d1,k+1,d2) //否则建立右子树

                       t->rchild=p ; //与根链接 }

      } //endif

       return(t);

 }     

设计算法:统计一个二叉树中所有叶结点的数目。递归算法:在此采用先根遍历方法,

下面算法中记录叶子数的count初值假定为0。

 int  countleaf(Bitree t)

 {      if (t==NULL)    return  0;

         if ((t→lchild==NULL)&&(t→rchild==NULL))

         return 1;

return( countleaf(t→lchild)+ countleaf(t→rchild,count);

  }

二叉树的存储结构及操作的虚拟实现

编写计算整个二叉树高度的算法(二叉树的高度也叫二叉树的深度)

int depth(Bitree  t)

  {  if (t==NULL)     return  0;

      else

          {   hl=depth(t→lchild);

               hr=depth(t→rchild);

          if(hl>hr)

             return(hl+1);

          else

             return(hr+1);

           }

   }

§6.5  线索二叉树

为什么讨论线索二叉树?

二叉树的数据元素是非线性关系,我们经常使用元素的序列这实际上是数据元素的一个线性序列(具有线性关系),但是,这种线性关系是依赖于遍历方式的!

显然,我们在按某种线性顺序使用数据元素时,可以调用遍历算法,可是,如果多次重复按同一种顺序使用数据元素,就要多次调用同一遍历算法,这显然不太合适,效率低!我们能否在第1次遍历时,记录下元素之间在这种遍历方式下的线性关系信息呢?以便后面使用时直接应用。

前序序列:abcdegf

记录线性信息,我们前面已经讲过:顺序——存放在数组中;链式——指针指示(增加两个指针  prev lchild data rchild next

这种方式记录了每个元素在某遍历方式下的前驱、后继信息,使用起来很方便!但是,空间消耗大!

§6.5  线索二叉树

我们知道,在二叉树的链式存储结构中,有很多空指针,考虑

利用它们来记录元素间线性信息的方法!左孩子若空,指向其前驱,右孩子为空,指向其后继;很明显,有的元素的左、右孩子非空,就不能记录线性信息!所以,这种方式不同于上面的方式,它记录的是部分线性信息。

[线索]:元素之间的线性信息,即前驱、后继信息;

[线索二叉树]:记录了线索信息的二叉树;

前序线索二叉树

中序线索二叉树

后序线索二叉树

前序前驱线索二叉树

前序后继线索二叉树

中序前驱线索二叉树

中序后继线索二叉树

后序前驱线索二叉树

后序后继线索二叉树

 [线索化]:以某中方式遍历二叉树,使其记录了线索信息的过程;

我们采用利用二叉树中的空指针来记录线索。

假设二叉树有N个结点,于是有N+1个空指针,所以可以记录

N+1个线索。要记录所有线索,需要2N个指针,因此,这种

线索方法,只是记录了部分线索!

结点的左子树空,则左指针记录该结点的前驱线索;

结点的右子树空,则右指针记录该结点的后继线索;

那么,如何区分是子树还是线索呢?

当 ltag=0   指向其左儿子

当 ltag=1   指向其前趋(记线索)

当 rtag=0   指向其右儿子

当 rtag=1   指向其后继(记线索)虚拟实现:

//-----二叉树的二叉线索存储表示--------

typedef   enum  { Link,Thread }  PointerTag; 

                          //Link==0;指针,Thread==1;线索

typedef  struct  BiThrNode    

                     {    TElemType                 data;     

                           struct    BiThrNode    *lchild,  *rchild;

                           PointerTag                  LTag,  RTag ;

                     } BiThrNode,  *BiThrTree ;

假设已经建立了某种遍历的线索,那么,在再按同样遍历方式遍历时,就可以直接使用线索信息得到遍历序列,遍历就是找前驱或后继,从而提高了效率,若每个结点都记录了前驱、后继线索,这是很方便的!!

但是,很遗憾,我们的线索方法是记录的不完全线索(为了节省空间),增加了找前驱、后继的难度,因为有些结点根本没有记录线索或仅仅记录了一部分!如何找前驱和后继?

方法:

在进行某种方式遍历的同时,把其中的空指针改为记线索(左指针空时,指向前驱;右指针空时指向后继)。

三、线索二叉树的插入、删除

在线索二叉树中插入、删除,除了象一般二叉树那样调整结点外,还必须要维护线索,更麻烦!维护线索有时比建立线索还难,所以,一般是采用先插入或删除结点,然后重建线索!

森林:m(m>=0)棵互不相交的树的集合。F={ T1,T2, ... , Tm }

一、树、森林和二叉树的转化

树的左孩子、右兄弟存储,即:凡是兄弟就连起来(右指针),然后只保留双亲到第一个孩子的连线而去掉到其他孩子的连线。

如果一个结点是双亲的左儿子,则将该结点的右儿子,

右儿子的右儿子,...,均与其双亲相连,然后去掉双亲

到右儿子的连线。

一、树、森林和二叉树的转化

二、F={T1,T2, ... ,Tm},

若m=0,则二叉树为空;

否则,二叉树的根为T1的根,T1的子树森林转化为二叉树的左子树,森林{T2,T3, ... ,Tm}转化为二叉树的右子树。(递归)或,每棵树分别转换为二叉树,然后Ti的二叉树作为Ti-1的二叉树的右子树

同二叉树还原为树一样!

1、树的遍历

先根方式:首先访问根结点,然后依次先根方式遍历根的各个子树;

后根方式:首先依次后根方式遍历根的各个子树,然后访问根结点

二、树、森林的遍历

先序方式:访问第一棵树根结点;先序遍历第一棵树的根的子树森林;先序遍历除第一棵树以外的子树森林;

2、森林的遍历

中序方式:中序遍历第一棵树的根结点的子树森林;访问第一棵树的根;中序遍历  除第一棵树以外的子树森林;

特殊二叉树之一:

一、二叉分类树的定义及特点

1、二叉分类树(Binary Sort Tree):

非递归定义:二叉树中,任何结点均满足条件:“大于或等于其左儿子,小于其右儿子

                      (若存在)”。

递归定义:若二叉树是空,则是二叉分类树;否则:若左子树不空,它的结点均小于等于根结点;若右子树不空,它的结点均大于根结点;左、右子树又都是二叉分类树!

2、特点:中序遍历二叉分类树,得到的序列是一个有序序列!

二、二叉分类树的建立

二叉分类树的建立,只要将数据元素链到合适的位置即可,可以看作在二叉树中插入一个元素,但位置灵活(满足性质)开始,二叉树空,插入到空二叉树中,即该数据元素就是根;

然后,读入数据元素,与根比较,若比根大则在右子树中插入,否则在左子树中插入。前面我们介绍了一般二叉树的建立,是比较难的,原因是根据结构建立二叉树,如果不考虑结构,仅仅是考虑满足某种性质,就简单多了。如二叉分类树的建立。

1、  基本思想

二叉分类树的建立,只要将数据元素链到合适的位置即可,

可以看作在二叉树中插入一个元素,但位置灵活(满足性质)

开始,二叉树空,插入到空二叉树中,即该数据元素就是根;

然后,读入数据元素,与根比较,若比根大则在右子树中

插入,否则在左子树中插入。

三、二叉分类树的插入、删除

1、插入:在二叉分类树中插入一个数据元素X。

2、删除:在二叉分类树中删除元素Y。

删除叶子是很容易的,我们用一个合适的叶子替换被删除的元素,然后删除叶子!

§6.8  HUFFMAN树(最优二叉树)

一、基本概念

1、路径:结点序列 n1 n2 ... nk 满足 ni 是  ni+1 的双亲。

2、路径长度:路径上的分支数。l=k-1

3、扩充二叉树:在一般二叉树中,将原来的每个空指针都指向一个特殊的结点——外结点,这样的二叉树称为扩充二叉树。

内结点——原来二叉树中的结点。

外结点个数 S=内结点个数 n+1

一、基本概念

4、树的内路径长度:从根结点到各个内结点的路径长度之和。

5、树的外路径长度:从根结点到各个外结点的路径长度之和。

6、结点的权:有时为了表示某种含义,赋予结点一个数值。

7、结点加权路径长度:从根结点到该结点的路径长度与权值之积,即 wi * li 。 

8、树的加权路径长度:假设树的叶子有权,树中所有加权结点的加权路径长度之和 。 

树的路径长度最小的是什么树?

9、HUFFMAN 树(最优二叉树):假设有 n 个数据元素,它们的权值为 w1,w2,...,wn,以它们为叶子构造具有 n 个叶子的二叉树,(很多棵)加权路径长度最小的二叉树称为 Huffman树 。 

特点:权值大的应该尽可能靠近根!

哈夫曼树的应用举例:

有一批百分制的成绩,按五分制分级

      (优、良、中、及格、不及格)

for( i=1; i<n; i++)

     {  scanf(x);

         if ( x>=90)  printf( “优 ”);

            else if  (x>=80)  printf( “良 “);

                           else if  (x>=70) printf( “中 “);

                                         else if  (x>=60) printf( “及格 “)

二、哈夫曼树的构造

1、基本思想:选择权值小的叶子离根距离远些(贪心算法)。

2、算法:第1步:以每个结点作为根,构造只有一个根结点的 n 棵

二叉树,根的权值就是结点的权。

第2步:在所有二叉树中选择根的权值最小的两棵二叉树作为左、右子树构造一棵新二叉树,根的权值等于其左、右子树的根的权值之和。

第3步:去掉选中的二叉树,加入新生成的二叉树。

第4步:重复第2、3步,直到只剩下一棵树为止。

编码的原则:首先,译码要唯一,即对字符进行编码后,能够唯一地翻译成原来的字符。

其次,各个字符的编码要尽可能短,只有这样才能使编码后最短。            

注意:达到其一,很容易!

例如,达到译码唯一

假设有8个字符,我们用长度是3的二进制编码即可

000  001  010  011 100 101 110 111

     例如,尽可能短 

1 0 11 00 10 01 001 011

三、哈夫曼树的应用——哈夫曼编码

编码的方法:哈夫曼编码的方法——不定长编码方式

[前缀码]:任何一个字符的编码都不是另外字符编码的前缀。

构造方法: 用被编码的字符作为叶子,构造二叉树,然后在二叉树的左分 支上标“0”,右分支标“1”(或反过来),每个字符的编码 就是从根到该字符叶子所经路径上的0、1序列。

为什么这样构造的是前缀码?

反证法:假设不是前缀码,即一个字符编码是另外字符编码

的前缀,从树上可以看出,从该结点又有分支发出,于是就

不是叶子,矛盾!

2、编码最短的方法——哈夫曼树

要使电文的编码长度最短,应该使频率高的字符,编码

应该短,可以使用频率作为权值,构造编码字符为叶子的

哈夫曼树(二叉树),使用频率高的字符,离根近,编码短

从而,电文编码后达到最短(而且是前缀码,由1知道)


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值