给定一个二叉树,判断其是否是一个有效的二叉搜索树。
一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入: 2 / \ 1 3 输出: true
示例 2:
输入: 5 / \ 1 4 / \ 3 6 输出: false 解释: 输入为: [5,1,4,null,null,3,6]。 根节点的值为 5 ,但是其右子节点值为 4 。
解决思路:1.递归判断左右子树。需要用出现过的最大、最小值来判断;
2.中序遍历。 合法的BST中序遍历必为有序序列,如果非法,则便利结果会出现相邻的逆序对。
class Solution_98 {
bool judge(TreeNode* root, long start, long end){
if (!root)
return false;
if (start > root->val || end <root->val)
return false;
return judge(root->left, start, root->val) && judge(root->right, root->val,end );
}
//给BST的左右子树分别划定上下界,左子树的上界和右子树的下界都是根节点的值,如果某一个节点的值查过该边界,自然不是BST
//对于一个右孩子节点,其下界是其父节点的值,上界为父节点的上界;同理,对于一个左海子,上界是父节点,下界是父节点的下界
public:
bool isValidBST(TreeNode* root) {
long start = INT_MIN-1;
long end = INT_MAX+1;
return judge(root, start, end);
}
};