三大分布
1. 卡方分布(Chi-Square Distribution)
1.1 定义
卡方分布((\chi^2) 分布)是指若有 ( k ) 个独立且服从标准正态分布 (N(0, 1)) 的随机变量 (Z_1, Z_2, \dots, Z_k),则它们的平方和:
[
X = Z_1^2 + Z_2^2 + \dots + Z_k^2
]
服从自由度为 (k) 的卡方分布,记为 ( X \sim \chi^2(k) )。其中,自由度 (k) 是指独立正态随机变量的个数。
1.2 性质
-
期望和方差:
- 期望值:(\mathbb{E}[X] = k)
- 方差:(\text{Var}(X) = 2k)
-
可加性(修改版):
- 如果 ( X_1 \sim \chi^2(k_1) ) 和 ( X_2 \sim \chi^2(k_2) ),且它们的生成正态随机变量是独立的,那么 ( X_1 + X_2 \sim \chi^2(k_1 + k_2) )。独立性是可加性成立的前提条件。
-
应用:
- 卡方分布主要用于假设检验中的卡方检验