最优化理论-统计学5

三大分布

1. 卡方分布(Chi-Square Distribution)

1.1 定义

卡方分布((\chi^2) 分布)是指若有 ( k ) 个独立且服从标准正态分布 (N(0, 1)) 的随机变量 (Z_1, Z_2, \dots, Z_k),则它们的平方和:

[
X = Z_1^2 + Z_2^2 + \dots + Z_k^2
]

服从自由度为 (k) 的卡方分布,记为 ( X \sim \chi^2(k) )。其中,自由度 (k) 是指独立正态随机变量的个数。

1.2 性质

  1. 期望和方差

    • 期望值:(\mathbb{E}[X] = k)
    • 方差:(\text{Var}(X) = 2k)
  2. 可加性(修改版):

    • 如果 ( X_1 \sim \chi^2(k_1) ) 和 ( X_2 \sim \chi^2(k_2) ),且它们的生成正态随机变量是独立的,那么 ( X_1 + X_2 \sim \chi^2(k_1 + k_2) )。独立性是可加性成立的前提条件。
  3. 应用

    • 卡方分布主要用于假设检验中的卡方检验
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值