题目描述
原题链接:1264.动态求连续区间和
树状数组
树状数组是一种数据结构,主要是为了动态求取某个区间和(前缀和)。
这里的动态指的是可以在某个位置修改元素的值。
而传统的前缀和思想是将所有操作执行完之后再求取某个区间的区间和。
相比于传统前缀和,树状数组可以边修改数组的元素边查询区间和。
树状数组主要有两种操作
o
(
l
o
g
n
)
o(logn)
o(logn):
①在x
位置加上v
。
②查询
[
1
,
x
]
[1,x]
[1,x]的区间和。
在写这两个函数之前需要先写lowbit(int x)
函数,返回
2
末尾连续
0
的个数
2^{末尾连续0的个数}
2末尾连续0的个数。
int lowbit(int x)
{
return x & (-x);
}
void add(int x, int v)
{
for(int i = x; i <= n; i += lowbit(i)) c[i] += v;
}
int query(int x)
{
int res = 0;
for(int i = x; i; i -= lowbit(i)) res += c[i];
return res;
}
线段树
线段树是一种数据结构,它利用了二分的思想,不断地将某一个区间分成两个子区间,直到分成的子区间只有一个元素为止。
线段树可以有多种用途,它可以被用于求区间的最大值,区间的和…
实现一个线段树主要有四个函数:pushup(int u)
、build(int u, int l, int r)
、query(int u, int l, int r)
和modify(int u, int x, int v)
。以及一个结构体Node
用来存储线段树的区间。
struct Node{
int l, r, sum;
} tr[N * 4];
void pushup(int u) //用于合并两个区间
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void build(int u, int l, int r) //建立某个区间
{
if(l == r) tr[u] = {l, r, w[l]};
else
{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid); //左区间
build(u << 1 | 1, mid + 1, r); //右区间
pushup(u);
}
}
int query(int u, int l, int r) // 查询某一个区间的和
{
if(l <= tr[u].l && r >= tr[u].r) return tr[u].sum;
int res = 0;
int mid = tr[u].l + tr[u].r >> 1;
if(l <= mid) res = query(u << 1, l, r);
if(r > mid) res += query(u << 1 | 1, l, r);
return res;
}
void modify(int u, int x, int v) //修改数组某一个元素的值
{
if(tr[u].l == tr[u].r) tr[u].sum += v;
else
{
int mid = tr[u].l + tr[u].r >> 1;
if(x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
解题思路
题目中的 1 ≤ n ≤ 1 0 5 , 1 ≤ m ≤ 1 0 5 1 \le n \le 10^5,1 \le m \le 10^5 1≤n≤105,1≤m≤105,因此如果使用前缀和,则时间复杂度为 o ( n m ) = 1 0 10 > 1 0 8 o(nm)=10^{10}\gt10^8 o(nm)=1010>108会超时。而如果使用树状数组或线段树,则时间复杂度为 o ( m l o g n ) < 1 0 8 o(mlogn) \lt 10^8 o(mlogn)<108就可以过掉。
c++代码
树状数组 o ( m l o g n ) o(mlogn) o(mlogn)
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100100;
int n,m,a[N],c[N];
int lowbit(int x)
{
return x & (-x);
}
void add(int x, int v)
{
for(int i = x; i <= n; i += lowbit(i)) c[i] += v;
}
int query(int x)
{
int res = 0;
for(int i = x; i; i -= lowbit(i)) res += c[i];
return res;
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
for(int i = 1; i <= n; i++) add(i, a[i]);
while (m -- )
{
int k, a, b;
scanf("%d%d%d", &k, &a, &b);
if(k == 0)
{
printf("%d\n", query(b) - query(a-1));
}
else if(k == 1)
{
add(a, b);
}
}
}
线段树 o ( m l o g n ) o(mlogn) o(mlogn)
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100100;
int n,m,w[N];
struct Node{
int l, r, sum;
} tr[N * 4];
void pushup(int u)
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void build(int u, int l, int r)
{
if(l == r) tr[u] = {l, r, w[l]};
else
{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid);
build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
int query(int u, int l, int r)
{
if(l <= tr[u].l && r >= tr[u].r) return tr[u].sum;
int res = 0;
int mid = tr[u].l + tr[u].r >> 1;
if(l <= mid) res = query(u << 1, l, r);
if(r > mid) res += query(u << 1 | 1, l, r);
return res;
}
void modify(int u, int x, int v)
{
if(tr[u].l == tr[u].r) tr[u].sum += v;
else
{
int mid = tr[u].l + tr[u].r >> 1;
if(x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++) scanf("%d", &w[i]);
build(1, 1, n);
while (m -- )
{
int k, a, b;
scanf("%d%d%d", &k, &a, &b);
if(k == 0) printf("%d\n", query(1, a, b));
else modify(1, a, b);
}
}