【AcWing 788. 逆序对的数量】题解

这篇博客详细解析了AcWing 788题目的逆序对数量计算。首先通过归并排序的思路解释了如何利用排序过程计算逆序对,接着介绍了使用树状数组结合离散化的方法来优化解决方案,有效解决了数据范围越界的问题。
摘要由CSDN通过智能技术生成

AcWing 788. 逆序对的数量

C++

题解一:归并排序

假定有把一个无序序列一分为二为两个有序序列,然后对其归并,设置双指针 i i i j j j 分别指向左半区间和右半区间,即两个元素 a a a b b b 分别位于左右两个区间产生的逆序对数量为 s 0 s_0 s0,元素 a a a b b b 同时位于左半区间或右半区间产生的逆序对数量为 s 1 s_1 s1 s 2 s_2 s2

那么,当指针 i i i 所指的元素 n u m s [ i ] nums[i] nums[i] 第一次大于指针 j j j 所指的元素 n u m s [ j ] nums[j] nums[j] 时,从此时起区间 [ i , m i d ] [i,mid] [i,mid] 里的所有元素都一定大于指针 j j j 所指的元素 n u m s [ j ] nums[j] nums[j] ,区间长度 m i d − i + 1 mid-i+1 mid</

归并排序是一种经典的排序算法,可以用于计算逆序对数量逆序对指的是在一个数组中,两个元素的顺序与它们在原数组中的顺序相反。 对于给定的数组,我们可以使用归并排序来计算逆序对数量。具体步骤如下: 1. 将数组不断地分成两半,直到每个子数组只有一个元素。 2. 递归地将这些子数组合并起来。在合并的过程中,统计逆序对数量。 3. 在合并两个子数组时,需要维护两个指针,分别指向两个子数组的开头。比较这两个指针所指向的元素的大小,如果前一个指针所指向的元素大于后一个指针所指向的元素,则存在逆序对。 4. 在合并过程中,将较小的元素放入一个临时数组,并将指针向后移动。如果存在逆序对,则逆序对数量等于第一个子数组中剩余的元素个数。 以下是一个示例代码,用于计算逆序对数量: ```python def merge_sort(nums): if len(nums) <= 1: return nums, 0 mid = len(nums) // 2 left, count_left = merge_sort(nums[:mid]) right, count_right = merge_sort(nums[mid:]) merged = [] count = count_left + count_right i, j = 0, 0 while i < len(left) and j < len(right): if left[i] <= right[j]: merged.append(left[i]) i += 1 else: merged.append(right[j]) count += len(left) - i j += 1 merged += left[i:] merged += right[j:] return merged, count def reversePairs(nums): _, count = merge_sort(nums) return count ``` 对于题目中给定的数组,调用 `reversePairs` 函数即可计算出逆序对数量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值