探索Oracle AI向量搜索:文档处理的实用指南

引言

在当今信息爆炸的时代,如何有效地处理和查询非结构化数据成为一个重要挑战。Oracle AI向量搜索通过语义查询,而非简单的关键词匹配,提供了令人耳目一新的解决方案。这篇文章将引导您如何使用Oracle AI向量搜索的文档处理功能,探索如何在Oracle数据库中加载和分块文档。

主要内容

Oracle AI向量搜索的优势

Oracle AI向量搜索不仅可以在同一系统中结合语义搜索和关系数据的查询,还利用了Oracle数据库的一系列强大功能,如分区支持、集群可扩展性等。这使得数据处理更加高效,避免了数据在多个系统间的碎片化。

环境准备

在开始之前,请确保您已经安装Oracle Python客户端驱动程序,以便通过Langchain使用Oracle AI向量搜索。可以使用以下命令安装:

# pip install oracledb

连接Oracle数据库

以下代码示例展示了如何连接到Oracle数据库。根据具体需求,您可以选择使用“Thin”模式或者“Thick”模式进行连接。

import sys
import oracledb

# 更新为您的用户名、密码、主机名和服务名
username = "<username>"
password = "<password>"
dsn = "<hostname>/<service_name>"

try:
    conn = oracledb.connect(user=username, password=password, dsn=dsn)
    print("Connection successful!")
except Exception as e:
    print("Connection failed!")
    sys.exit(1)

创建表并插入数据

接下来,我们创建一个表并插入一些示例文档:

try:
    cursor = conn.cursor()

    drop_table_sql = """drop table if exists demo_tab"""
    cursor.execute(drop_table_sql)

    create_table_sql = """create table demo_tab (id number, data clob)"""
    cursor.execute(create_table_sql)

    insert_row_sql = """insert into demo_tab values (:1, :2)"""
    rows_to_insert = [
        (1, "Document text 1."),
        (2, "Document text 2."),
        (3, "Document text 3."),
    ]
    cursor.executemany(insert_row_sql, rows_to_insert)

    conn.commit()

    print("Table created and populated.")
    cursor.close()
except Exception as e:
    print("Table creation failed.")
    cursor.close()
    conn.close()
    sys.exit(1)

加载文档

使用OracleDocLoader从Oracle数据库中加载文档:

from langchain_community.document_loaders.oracleai import OracleDocLoader

loader_params = {
    "owner": "<owner>",
    "tablename": "demo_tab",
    "colname": "data",
}

loader = OracleDocLoader(conn=conn, params=loader_params)
docs = loader.load()

print(f"Number of docs loaded: {len(docs)}")

文档分块

通过OracleTextSplitter将文档分块,以便生成嵌入:

from langchain_community.document_loaders.oracleai import OracleTextSplitter

splitter_params = {"normalize": "all"}
splitter = OracleTextSplitter(conn=conn, params=splitter_params)

list_chunks = []
for doc in docs:
    chunks = splitter.split_text(doc.page_content)
    list_chunks.extend(chunks)

print(f"Number of Chunks: {len(list_chunks)}")

常见问题和解决方案

  1. 连接问题: 确保所有数据库连接参数正确无误,并检查网络连接是否正常。
  2. 文档格式不匹配: 若文档格式不在支持范围内,考虑转换格式或参阅Oracle Text Supported Document Formats以获取详细信息。

总结和进一步学习资源

通过本文,您学习了如何在Oracle数据库中使用Oracle AI向量搜索进行文档处理。进一步探索可以参考以下资源:

参考资料

  • Oracle 官方文档
  • Langchain 使用手册

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值