大禹智库
大禹智库——河南第一民间智库,致力于钧共体,文旅融合,数字化转型和AI智能体应用四大领域
展开
-
颠覆式革新:Dify×DeepSeek引爆企业级AI开发效率革命
通过Python SDK开发行业专属工具(如医疗影像分析模块)。创新案例:开发者结合DeepSeek和Dify的天气API,48小时搭建农业灾害预警系统。原创 2025-03-15 17:00:00 · 114 阅读 · 0 评论 -
GitHub霸榜神器!NextChat领衔DeepSeek全栈开发范式
NextChat(原ChatGPT-Next-Web)是GitHub上斩获81.2K星标的现象级开源项目,定位为"轻量级AI助手终端",支持DeepSeek、Claude、GPT-4、Gemini等20+主流大模型。• 原生集成DeepSeek、GPT-4、Gemini Pro等模型API,同时兼容RWKV-Runner、LocalAI等自建模型框架,通过环境变量。• 客户端体积仅5MB(Windows安装包约6MB),采用PWA渐进式Web应用技术,首屏加载速度优化至100KB级,老旧设备亦可流畅运行。原创 2025-03-15 09:00:00 · 13 阅读 · 0 评论 -
ChatboxAI:开启高效智能交互的全能助手
ChatboxAI 通过多模型集成场景化工具链与开源生态,重新定义了人机协作的边界。无论是学生、开发者还是企业管理者,均可通过低门槛交互获得专业级辅助。其“本地化+云端”混合架构在安全与功能间取得平衡,而活跃的社区生态确保工具持续进化。随着 2025 年多模态 AI 的爆发,ChatboxAI 有望成为个人与组织的智能中枢,推动生产力迈向新高度。原创 2025-03-14 18:36:27 · 29 阅读 · 0 评论 -
从被动检索到主动推理,揭秘新一代Agentic RAG如何借DeepSeek重构知识管理
支持本地文档(PDF/TXT/Markdown)与在线数据(通过FireCrawl等爬虫)的离线索引,确保私有数据不出域。通过分库分表策略管理多源数据,例如金融场景可将财报、研报、新闻分别存储。例如,在分析企业财报时,可能拆解为"营收增长率""成本结构变化""市场竞争格局"等子维度。当检测到信息矛盾或证据不足时,自动生成修正问题(如"对比2024Q4与2023Q4的现金流变化"),直至达到循环终止条件。:支持DeepSeek全系模型(含671B满血版)、OpenAI等,通过API或本地部署灵活切换。原创 2025-03-14 18:20:35 · 14 阅读 · 0 评论 -
《实战AI智能体》DeepSearcher 的架构设计
每次对向量数据库中内容完成数据查询后,系统都会启动一个反馈(reflection)流程,然后在每一轮迭代结束时,智能体(Agent)会对查询到的知识进行评估,判断其是否足以解答初始提出的问题。一个是数据接入模块,通过Milvus向量数据库来接入各种第三方的私有知识。这也是DeepSearcher相比OpenAI的原本DeepResearch做出的一大重大升级——更适合拥有独家数据的企业级场景。这个模块包括了各种Agent策略以及RAG的实现部分,负责给用户提供准确有深度的回答。原创 2025-03-12 09:00:00 · 464 阅读 · 0 评论 -
《实战AI智能体》Deep Searcher VS Graph RAG
Deep Searcher在不论是类似探究“A、B和C之间存在何种关系”这样复杂的逻辑问题,亦或是撰写各类专业报告等任务,都能在查询阶段,依据问题的特性灵活调整路由策略,进行反复的反馈迭代思考,从而给出最为精准、全面的回答。未来,随着大模型成本持续降低,推理性能稳步提升,像Deep Searcher这样的Agentic RAG凭借其突出的灵活性与适应性,极有可能在未来成为主流技术,并在实际应用场景中实现深度落地。Graph RAG主要聚焦于对存在连接关系的文档展开查询,在处理多跳类问题上表现出色。原创 2025-03-11 22:00:00 · 214 阅读 · 0 评论 -
《实战AI智能体》Deep Searcher VS 普通RAG 定量对比
很明显可以看到,随着迭代次数的提高,我们可以看到,Deep Searcher 的token的消耗是线性地提升。如果按照4次来算,大约0.3M的token消耗,如果粗略按照OpenAI的gpt-4o-mini单价0.60$/1M output token来算,平均每次查询大约是0.18 / 50 = 0.0036美元的费用消耗。,说明反馈次数增加后,可能会达到一定的上限,继续反馈可能不太能得到更好的效果(因此,我们默认迭代次数为3,您可以根据自身的需求进行调整)。另外在我们的测试中,原创 2025-03-11 17:56:59 · 100 阅读 · 0 评论 -
实战AI智能体开发全流程解析:基于扣子平台的高效实践
(引言)在AI技术快速落地的今天,开发具有复杂交互能力的智能应用已成为企业数字化转型的关键。扣子平台凭借其独特的开发模式和工具链,显著降低了AI应用开发门槛。本文将详细解析基于该平台的完整开发流程,为开发者提供清晰的实施路径。原创 2025-03-05 19:48:00 · 79 阅读 · 0 评论 -
基于DeepSearcher系统架构设计与Mlivus Cloud工程实践
从业者需在理论创新与工程实践之间找到平衡点,这正是《向量数据库指南》贯穿始终的核心思想——书中系统梳理的48个实战案例和16套架构模版,将帮助读者快速掌握构建智能搜索系统的精髓。笔者基于在《向量数据库指南》中提出的向量数据库应用方法论,结合Mlivus Cloud工程实践经验,深入解析该系统实现的关键挑战与技术突破路径。《向量数据库指南》第7章详细阐述了如何通过向量数据库构建智能搜索系统的23个关键设计模式,其中特别推荐的"异步流水线架构"已在多个金融行业客户场景中验证可将系统吞吐量提升4-8倍。原创 2025-03-07 20:00:00 · 43 阅读 · 0 评论 -
深度解析DeepSearcher:向量数据库驱动的新一代智能检索范式
(大禹智库向量数据库高级研究员,《向量数据库指南》作者)原创 2025-03-07 09:00:00 · 28 阅读 · 0 评论 -
《实战AI智能体》——不同RAG模式GraphRAG和DeepSearcher维度对比
一、RAG技术体系的核心维度解析作为深耕向量数据库领域30余年的专家,我曾主导Mlivus Cloud在金融、医疗、工业等领域的检索增强生成(RAG)系统落地。从技术演进视角看,RAG的范式迭代始终围绕四大维度展开。在《向量数据库指南》中,我系统梳理了不同RAG模式的技术差异与选型逻辑,本文将结合实战案例深度解读三类主流范式——传统RAG、GraphRAG与DeepSearcher的核心特性及其与向量数据库的协同优化策略。原创 2025-03-06 20:00:00 · 46 阅读 · 0 评论 -
《实战AI智能体》——DeepSearcher设计模式试验效果
作为《向量数据库指南》作者,我在多年的行业实践中发现,真正实现智能检索的突破点在于对文本内容的多层次语义解构能力。本文将以"DeepSearcher"项目为案例,结合Mlivus Cloud向量数据库的父子检索特性,详细解析分层语义理解系统的构建方法论。分层语义理解系统的构建是AI工程领域的皇冠明珠,需要算法设计、系统架构、数据建模等多维能力的深度融合。Mlivus Cloud提供的父子检索功能为这类系统提供了坚实的工程基础,但真正的竞争优势来自对业务场景的深度理解。一、分层语义理解的技术演进与工程实践。原创 2025-03-06 09:00:00 · 42 阅读 · 0 评论 -
《实战AI智能体》——传统RAG设计模式试验效果
本文基于笔者在《向量数据库指南》中提出的"三维向量优化理论",结合Mlivus Cloud云原生向量数据库的实践案例,系统性地解构传统RAG架构的实现路径与优化空间。读者若希望深入理解Mlivus Cloud的高级功能,系统学习索引优化、分布式部署等关键技术,可参阅笔者撰写的《向量数据库指南》。需要特别说明的是,本次实验涉及的向量化处理、索引构建等核心技术细节,在笔者的《向量数据库指南》中都有详尽代码示例和参数调优方案,读者可通过系统化学习获得深度实战能力。一、传统RAG架构的技术验证与效能瓶颈。原创 2025-03-05 20:00:00 · 33 阅读 · 0 评论 -
《实战AI智能体》——GraphRAG设计模式试验效果
这里我们使用NebulaGraph Studio进行测试。使用deepseek生成一些测试数据集。安装NebulaGraph导入测试数据。配置Nebula API调用等。Dify创建工作流应用。原创 2025-03-05 09:00:00 · 16 阅读 · 0 评论 -
《实战AI智能体》不同RAG结果生成对比
本文将结合Mlivus Cloud的技术特性,深度解析传统RAG、GraphRAG及DeepSearcher三大技术范式的架构差异、性能表现及适用场景。在Mlivus Cloud的工程实践中,我们采用768维BERT嵌入模型构建语义索引,通过近似最近邻(ANN)算法实现亿级向量的毫秒级检索。《向量数据库指南》第5章详细拆解了基于Mlivus Cloud的RAG系统优化策略,包括混合索引构建、动态负载均衡等核心技术,读者可通过购买本书获取完整的性能调优方案与工业级案例代码。一、RAG技术基础架构解析。原创 2025-03-04 20:00:00 · 23 阅读 · 0 评论 -
《实战AI智能体》——DeepSearcher不同RAG检索机制对比
在人工智能技术迅猛发展的今天,检索增强生成(Retrieval-Augmented Generation)作为连接大规模语言模型与领域知识的核心技术,正经历着从基础范式到创新架构的快速迭代。本文基于笔者在《向量数据库指南》中提出的"三维检索增强框架",结合Mlivus Cloud平台的最新实践,深入剖析当前主流检索机制的技术特征与工程实现路径。但需注意图数据库的维护成本指数级增长问题,建议采用Mlivus Cloud的混合存储引擎,对热数据进行内存缓存,冷数据持久化到分布式存储。原创 2025-03-04 09:00:00 · 875 阅读 · 0 评论 -
《实战AI智能体》不同RAG技术架构对比——DeepSearcher
作为《向量数据库指南》作者,我在过去三年深度参与了超过200个企业级AI项目的架构设计,发现不同RAG架构的选择直接影响着知识召回率、推理准确性和系统响应延迟等核心指标。本文将结合Mlivus Cloud的工程实践经验,系统剖析传统RAG、GraphRAG和DeepSearcher三大技术架构的差异特征与实施路径。传统RAG架构采用经典的"分块-嵌入-检索"三阶段处理流程。但需要特别注意的是,该架构对硬件资源的需求呈指数级增长,建议采用Mlivus Cloud的弹性扩缩容功能进行成本控制。原创 2025-03-03 20:00:00 · 53 阅读 · 0 评论 -
《实战AI智能体》传统RAG、Graph RAG、DeepSearcher的本质区别
作者:大禹智库高级研究员 王帅旭(《向量数据库指南》作者)原创 2025-03-03 09:00:00 · 341 阅读 · 0 评论 -
《向量数据库》揭秘:大模型时代的记忆双引擎架构与工程实践
在大模型技术快速迭代的今天,"Test-Time 记忆范式与外部知识增强"已成为突破模型性能天花板的关键路径。作为《向量数据库指南》作者及大禹智库高级研究员,我在Mlivus Cloud的工程实践中发现:仅依靠模型参数的静态知识已难以应对复杂推理需求,必须构建动态记忆系统与知识增强的协同框架。本文将从技术原理、实现路径到工程实践进行系统性拆解。原创 2025-03-02 17:00:00 · 195 阅读 · 0 评论 -
Mlivus Cloud向量数据库高级研究员视角:基于潜在空间推理的下一代AI架构演进
(文/王帅旭 大禹智库高级研究员,《向量数据库指南》作者)原创 2025-03-02 12:40:10 · 16 阅读 · 0 评论 -
RAG新范式:DeepSearcher如何重塑用户需求与技术架构
Simple RAG时代,问题分析,本地知识检索,互联网知识检索,内容生成,需要被环环拆解,人机协同;到了Graph RAG时代,检索与基础的问题拆解成为可能,但深度创作能力依然欠缺;此外,对于AI Agent场景而言,一定会有非结构化数据和结构化数据要混着用的情况,当在一个推理任务中同时需要检索大规模的非结构化数据和结构化数据的时候,DeepSearcher类产品在实际部署中,我们需要。对于b类客户,可能把分析问题的计划编排能力开放一部分给用户,会提升整个推理过程的可控性,也能增强最终答案的质量。原创 2025-02-26 17:00:00 · 136 阅读 · 0 评论 -
Deep Searcher成为企业级RAG最新范式效果展示
之后,模型会先在Milvus里面进行检索,找到合适的数据之后通过LLM进行整理聚合之后,会继续判断当前的信息是否已经足以回答所有子问题,如果不能,就会进入下一轮循环,继续搜索和分析,直到大模型认为所有子问题的答案都已经达到它的标准,这个时候大模型会基于原始问题再进行一轮分析,给出最终的答案。其中在财务表现层面,DeepSearcher不但逐个分析了2024财年里面它觉得值得关注的趋势性信息,例如营收变化情况,还进一步展开讨论了它对包括现金流,PE,PB在内的多个指标的看法。6.特斯拉股票的估计公允价值。原创 2025-02-26 09:00:00 · 38 阅读 · 0 评论 -
Deep Searcher:企业级RAG的新范式,重新定义知识检索与生成
在人工智能技术高速迭代的今天,企业级知识管理正面临两大核心挑战:如何从海量非结构化数据中精准提取信息,以及如何以最低成本实现私有化部署的智能化升级。传统RAG(Retrieval-Augmented Generation)方案虽能缓解部分问题,但在数据预处理复杂性、模型灵活性、部署成本等方面始终存在瓶颈。而近期开源的 Deep Searcher 项目,凭借其创新的技术架构和全开源生态,迅速成为企业级RAG领域的最新标杆,仅一周便斩获GitHub 800+星标,引发行业热议。传统企业级AI方案常依赖闭源模型或原创 2025-02-25 17:20:26 · 89 阅读 · 0 评论 -
Deep Searcher成为企业级RAG最新范式教程参考
但是Deep Searcher,基于向量数据库Milvus,我们可以对用户存储在本地的数据进行海量低延时的离线搜索。普通人想要分析一家公司,可以收集到的数据信息一般可以分为3类:公司财报、第三方机构的研报或者专业财经自媒体的分析博客、和公司以及行业相关的新闻。当然你也可以自主选择你喜欢的Embedding模型,例如OpenAI的text-embedding-3-small。接下来你只需要把你本地的资料路径进行如下配置,就可以直接完成文本切片,embedding和写入Milvus的流程。原创 2025-02-25 17:16:43 · 279 阅读 · 0 评论 -
《向量数据库指南》——深入解析Mlivus Cloud的索引构建:临时索引与持久化索引的决胜之道
在数据驱动的时代,向量数据库作为支持各种人工智能应用与大数据分析的重要工具,其性能和灵活性至关重要。随着新数据的不断写入,如何高效地处理和管理这些数据成为了数据库设计中的一大挑战。在这一背景下,索引构建技术显得尤为重要。本文将对Mlivus Cloud中的索引构建进行深入探讨,特别是临时索引与持久化索引的构建过程、应用场景及其配置细节,以帮助用户更好地理解和优化数据查询性能。如果您希望获取更多关于向量数据库的深度实战技巧,建议您阅读我的畅销书《向量数据库指南》,其中提供了大量的专业知识和实用案例。原创 2025-02-07 19:00:51 · 73 阅读 · 0 评论 -
《向量数据库指南》——提升性能的秘密武器:Mlivus Cloud中的Segment合并优化
在向量数据库的快速发展与应用过程中,数据管理和优化显得尤为重要。作为一位拥有30多年向量数据库与AI应用实战经验的专家,我在此分享关于Mlivus Cloud中Segment合并优化的深度分析,涵盖Compaction的三种主要场景,以及如何有效实施这些优化,提升系统性能的实用策略。如果您希望深入了解向量数据库的架构与应用,强烈推荐您阅读我的畅销书《向量数据库指南》,其中包含大量干货,帮助您在技术上获得更深入的理解和实战经验。原创 2025-02-09 09:00:00 · 42 阅读 · 0 评论 -
《向量数据库指南》数据落盘:Growing Segment 如何持久化?
下面是某个 segment 在 MinIO 中的存储结构示例,可见 455457303288873052 表示 collection ID,455457303288873053 表示 partition ID,455457303289273082 表示 segment ID,而 0/1/100/101/102 则分别代表该 Collection 的各个字段 ID。Chunk 指的是 segment 中的一小段数据,并且每个字段的数据也会被分别写入独立的文件。时,就会被转为 sealed segment。原创 2025-02-08 09:00:00 · 29 阅读 · 0 评论 -
《向量数据库指南》——提升性能:Mlivus Cloud中的高效数据传输与分片策略
在现代数据管理和人工智能应用的背景下,向量数据库的使用变得愈发重要。作为一位拥有30多年向量数据库和AI应用实战经验的行业专家,我在此深入探讨向量数据库中的数据写入过程,特别是如何将Insert请求拆解为Segment,帮助读者更好地理解这一技术细节。同时,我也在此推荐我的畅销书《向量数据库指南》,其中包含大量干货内容,能够帮助您在向量数据库的实际应用中获得深度实战经验,从而更好地应对行业挑战。原创 2025-02-07 18:44:03 · 100 阅读 · 0 评论 -
《向量数据库指南》——应对ElasticSearch挑战,拥抱Mlivus Cloud的新时代
在此过程中,虽然 Mlivus Cloud 为企业提供了强大的向量数据库解决方案,但在实际应用中,仍然需要专业的技术团队进行系统的规划和实施。作为行业资深专家,我建议有兴趣深入了解向量数据库的读者,参考我所著的《向量数据库指南》。本书不仅提供了理论知识,还包括大量的实战案例和最佳实践,帮助您更好地理解和应用向量数据库技术。在选择向量数据库解决方案时,企业应综合考虑数据的特性、业务需求、性能需求及成本控制等多个因素。原创 2025-01-03 18:02:46 · 460 阅读 · 0 评论 -
《向量数据库指南》混合检索系统的深度探索与实践:从POC到生产级解决方案的构建
综上所述,构建一个生产级的混合检索系统是一项复杂而富有挑战性的任务,但通过合理利用Mlivus Cloud等先进技术,我们可以有效应对这些挑战,实现检索效率与质量的双重提升。作为向量数据库领域的专家,我深知这一过程中的每一步都充满了细节与智慧。为了帮助更多开发者深入理解混合检索的核心原理与实践技巧,我撰写了《向量数据库指南》,书中不仅涵盖了向量数据库的基础理论,还通过大量实战案例,深入剖析了混合检索系统的构建与优化策略。原创 2025-01-03 17:54:22 · 189 阅读 · 0 评论 -
《向量数据库指南》——解锁数据检索新速度!
通过阅读这本书,读者可以全面了解向量数据库的基本原理和关键技术,掌握向量数据库的应用场景和解决方案,从而更好地应对大数据和人工智能时代的挑战。同时,我们也期待更多的向量数据库供应商能够涌现出来,共同推动向量数据库技术的发展和应用,为大数据和人工智能时代的到来贡献更多的力量。然而,令人瞩目的是,以Mlivus Cloud为代表的创业公司,凭借卓越的产品能力和创新战略,首次冲进领导者象限,成为这个市场在产品和技术创新方面的领头羊。随着大模型的广泛应用和规模的不断扩大,企业对向量数据库的需求也日益增长。原创 2024-12-22 20:00:00 · 104 阅读 · 0 评论 -
《向量数据库指南》——RAG破局,大模型新纪元!
2023年3月,OpenAI官宣通过chatgpt-retrieval-plugin插件集成向量数据库,这一举动不仅彰显了向量数据库在大模型长期记忆中的关键作用,也直接推动了向量数据库市场的爆发。作为向量数据库领域的权威之作,《向量数据库指南》不仅详细介绍了向量数据库的原理、架构、应用场景以及未来发展趋势,还通过丰富的实战案例,帮助企业更好地理解和应用向量数据库。在未来的发展中,随着技术的不断进步和应用场景的不断拓展,向量数据库将继续发挥其在数据存储、检索和分析方面的优势,为AI时代的到来贡献更多的力量。原创 2024-12-21 20:00:00 · 137 阅读 · 0 评论 -
《向量数据库指南》——AI时代,向量数据库如何颠覆传统?
此外,伴随移动互联网的发展,IDC统计发现,非结构化数据的数量正在飞速增长,占据了全人类数据总量的80%之多。比如一朵玫瑰花的照片,在向量空间中,可以被描述为:图片格式、植物、红色、爱情、保质期短、花卉等几百上千个维度,这些维度全部以数字与代码的形式呈现给计算机,在此基础上,人工智能通过暴力的学习,进而掌握玫瑰花的图片识别能力。“如果说算力是火箭的机体,那么算法是控制系统,数据是燃料,虽然每一轮计算机技术的革命都是从硬件开始,然后是算法的进步,但数据才是最核心、最有价值的资源。痛点众多,但需求同样迫切。原创 2024-12-21 09:00:00 · 55 阅读 · 0 评论 -
《向量数据库指南》——Scaling Law落幕,向量数据库引领智能新纪元
更重要的是,你将能够站在巨人的肩膀上,以更加广阔的视野和深刻的洞察力去审视和把握未来智能技术的发展趋势。本书由拥有30多年向量数据库和AI应用实战经验的资深专家王帅旭(大禹智库向量数据库高级研究员)倾力打造,不仅系统介绍了向量数据库的基本原理、关键技术和应用场景,还通过大量实战案例深入剖析了向量数据库在AI应用中的实际价值。与基于规则和结构化的传统数据库不同,向量数据库专注于处理非结构化数据,通过向量化的方式捕捉数据的内在特征,实现高效、精准的相似度计算和检索。三、灵活适应多样化的AI应用需求。原创 2024-12-20 17:39:01 · 53 阅读 · 0 评论 -
ServiceNow:如何利用低代码和 AI 驱动解决方案如何优化退货管理?
数据显示,2023 年零售业的整体退货率达到 14.5%,退货商品总价值高达 7430 亿美元。线上购物的退货率更高,约为 17.6%,而实体店的退货率为 10.02%。这表明高效管理退货流程的复杂性及成本压力日益增加。此外,退货处理成本通常占产品原价的 20-30%,并且其中 13.7% 为欺诈性退货,2023 年给零售商造成约 1010 亿美元的损失。显然,企业亟需一种强大且高效的逆向物流解决方案。原创 2024-12-12 12:00:00 · 76 阅读 · 0 评论 -
《低代码指南》重点关注亚太地区 AI 与低代码协同加速应用开发
研究显示,亚太地区超过 60% 的应用程序是遗留系统,带来了诸如架构僵化和高维护成本等障碍。技能短缺加剧了这些问题,现代化这些系统仍然是企业的首要任务。然而,过时的框架和较低的开发者生产力常常阻碍进展。为克服这些障碍,68% 的亚太企业正转向现代开发工具——包括低代码、集成开发环境(IDEs)和 DevOps。虽然低代码平台可以通过最少的编码实现更快的应用创建,从而简化软件开发,但 AI 驱动的低代码解决方案更进一步,通过自动化复杂流程和提供智能洞察来提升效率并激发创新。原创 2024-12-11 12:00:00 · 49 阅读 · 0 评论 -
《低代码指南》OutSystems举办首届韩国峰会:低代码与AI行业巨头齐聚,推动创新加速
OutSystems韩国负责人Changhyeon Kim表示:“随着韩国企业逐渐采用AI技术以实现未来数字化解决方案,OutSystems韩国峰会恰逢其时,帮助企业掌握下一代AI驱动的软件开发知识,加速数字化转型并推动业务成功。峰会将深入探讨人工智能驱动的最新软件开发趋势,并分享行业领导者在业务运营中应用低代码技术的策略与最佳实践,帮助与会者获得宝贵的见解。这场首次在韩国举办的行业盛会将以“通过GenAI + 低代码加速创新”为主题,展示低代码和生成式AI(GenAI)的实际应用案例。原创 2024-12-10 12:00:00 · 54 阅读 · 0 评论 -
《向量数据库指南》揭秘:Mlivus Cloud如何以WebUI重塑向量数据库易用性
因此,在Mlivus Cloud的新版本中,我们针对易用性进行了全面的提升,推出了Cluster Management WebUI工具,旨在为用户提供更加便捷、高效的数据库管理体验。同时,你也可以通过参与社区讨论、分享经验和实践案例等方式,与更多的同行交流互动,共同推动向量数据库技术的发展和应用。通过该工具,管理员可以直观地看到数据库的各项指标和数据,从而快速定位问题的根源,并采取相应的措施进行解决。然而,技术的革新只是起点,真正的挑战在于如何将这些先进的技术应用到实际场景中,为用户创造更大的价值。原创 2024-12-12 09:00:00 · 122 阅读 · 0 评论 -
《向量数据库指南》——Mlivus Cloud 2.5:标量过滤性能革命性提升
从内部的测试结果来看,Text Match的优势非常明显,尤其在并发查询的场景下,最多可以拿到400倍的QPS提升。此外,值得注意的是,随着cardinality的增加,相比于BitMap Index,Inverted Index将表现出更均衡的性能。作为大禹智库的向量数据库高级研究员,以及《向量数据库指南》的作者,我,王帅旭,深知这一优化的重要性。因此,在Mlivus Cloud 2.5中,我们针对Scalar Index进行了全面的优化,补足了索引类型,以满足不同场景下的需求。原创 2024-12-11 20:00:00 · 78 阅读 · 0 评论 -
《向量数据库指南》——Milvus Cloud以向量为特色的全文检索功能
首先,值得注意的是分词器的部分,对于有搜索引擎经验的用户来说其重要程度不言而喻,我们选择融入了发展良好的 tantivy 生态,基于 tantivy 构建了我们分词器的基础功能,而未来除了更多分词功能的支持和可观测性的优化之外,我们会探索基于深度学习的 tokenizer 和 stemmer 策略来进一步优化全文检索的表现。作为原生的向量数据库,Milvus 引入全文检索功能对基于 dense vector 的搜索能力进行了扩展,方便了用户构建更高质量的 AI 应用。与全文检索同时推出的还有。原创 2024-12-11 09:00:00 · 45 阅读 · 0 评论