akira

未来的数据科学家

Google推荐系统Wide & Deep Learning for Recommender Systems论文翻译&解读

Wide & Deep Learning for Recommender Systems 推荐系统中的Wide & Deep Learning 摘要 Generalized linear models with nonlinear feature t...

2018-12-12 14:41:47

阅读数 335

评论数 0

手把手教你用Python实现感知机

实现 Python代码 import numpy as np import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot as plt # 载入数据 def load_data_set(file_name...

2018-04-19 18:47:52

阅读数 706

评论数 0

手把手教你用Python+朴素贝叶斯实现垃圾邮件分类

用朴素贝叶斯进行简单的垃圾邮件分类 import numpy as np import re import os import random import numpy as np # 处理给定路径下的文件 def load_data(folder_path): os.chdir(f...

2018-04-19 18:46:27

阅读数 1262

评论数 0

带你搞懂GBDT算法原理

一、引言   在集成学习原理介绍中,简单的介绍了根据个体学习器学习方式不同划分的两大类集成学习方法,个体学习器间存在强依赖关系、必须串行生成的序列化方法,如Boosting;个体学习器间不存在强依赖关系、可同时生成的并行化方法,如Bagging。   回顾一下Boosting算法的学习机制:先...

2018-04-19 18:42:36

阅读数 3270

评论数 0

带你搞懂Adaboost算法原理

一、引言   在集成学习原理介绍中,简单的介绍了根据个体学习器学习方式不同划分的两大类集成学习方法,个体学习器间存在强依赖关系、必须串行生成的序列化方法,如Boosting;个体学习器间不存在强依赖关系、可同时生成的并行化方法,如Bagging。   回顾一下Boosting算法的学习机制:先...

2018-04-18 18:38:47

阅读数 106

评论数 0

带你搞懂集成学习原理

一、集成学习是什么? 举个例子,假设你有一个关于股票的问题,你身边有10个朋友,他们分别有自己擅长的行业股票,你想得到他们的帮助,你可以这样做。 (1)选出你最信任的那个朋友,听从他的建议(普通的学习算法,选择验证效果最好的) (2)让所有朋友给你建议,通过某个加权计算或者投票,计算出最终的...

2018-04-18 08:33:18

阅读数 300

评论数 0

手把手教你用scikit-learn决策树算法库画出决策树

想了解决策树的原理,可以看我关于决策树理论的介绍 参数的介绍 共同参数 含义 max_depth 决策树最大深度:默认可以不输入,决策树在生成的时候不会限制树的深度。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大...

2018-04-16 13:50:10

阅读数 787

评论数 0

带你搞懂决策树算法原理

一、决策树是什么?   顾名思义,决策树是由一个个“决策”组成的树,学过数据结构的同学对树一定不陌生。决策树中,结点分为两种,放“决策依据”的是非叶结点,放“决策结果”的是叶结点。   那么决策是什么呢?很好理解,和人一样,决策就是对于一个问题,有多个答案,选择答案的过程就是决策。在决策树中,...

2018-04-15 21:59:30

阅读数 2995

评论数 0

机器学习中常见的概率知识

几个常见概率概念 先验概率: 事件发生前的预判概率。可以是基于历史数据的统计,可以由背景常识得出,也可以是人的主观观点给出。贝叶斯中的先验概率一般特指P(y) 后验概率: 事件发生后求的反向条件概率;或者说,基于先验概率求得的反向条件概率。概率形式与条件概率相同。 P(y|x) ...

2018-04-14 20:27:17

阅读数 137

评论数 0

带你搞懂朴素贝叶斯算法原理

一、朴素贝叶斯是什么,怎么用? 贝叶斯定理:朴素贝叶斯定理体现了后验概率 P(y|x)P(y|x)P(y|x) 、先验概率 P(y)P(y)P(y) 、条件概率 P(x|y)P(x|y)P(x|y) 之间的关系: P(y|x)=P(x,y)P(x)=P(x|y)⋅P(y)P(...

2018-03-18 21:42:16

阅读数 2136

评论数 0

带你搞懂支持向量机SVM算法原理

感知机是SVM的基础,详细介绍请戳http://blog.csdn.net/akirameiao/article/details/79436859 一、原理 1. 线性可分支持向量机 问题的输入输出 X = {x1,x2,...,xnx1,x2,...,xnx_1,x_2,.....

2018-03-05 22:07:31

阅读数 1294

评论数 1

带你搞懂感知机算法原理

很多人可能听过大名鼎鼎的SVM,这里介绍的正是SVM算法的基础——感知机,感知机是一种适用于二类线性分类问题的算法 原理 问题的输入与输出: X = {x1,x2,...,xnx1,x2,...,xnx_1,x_2,...,x_n} Y = {+1, -1} 模型: 感知...

2018-03-04 17:35:28

阅读数 907

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭