手把手教你用Python实现感知机

本文手把手教你如何使用Python从零开始实现感知机算法,包括详细的代码实现和实验数据解析,带你理解感知机的工作原理。
摘要由CSDN通过智能技术生成

实现

  1. Python代码

    import numpy as np
    import matplotlib
    matplotlib.use('TkAgg')
    from matplotlib import pyplot as plt
    
    
    # 载入数据
    def load_data_set(file_name):
        fr = open(file_name)
        data_set = []
        label = []
        for line in fr.readlines():
            line_data = line.strip().split('\t')
            data_set.append([float(line_data[0]), float(line_data[1])])
            label.append(float(line_data[2]))
            data_mat = np.mat(data_set)
            data_mat_new = np.insert(data_mat, 2, values=1, axis=1)
        return data_mat_new, label
    
    
    # 感知机分类学习
    def precep_classify(data_mat, label_mat, eta=1):
        omega = np.mat(np.zeros(3))
        m = np.shape(data_mat)[0]
        error_data = True
        while error_data:
            error_data = False
            for i in range(m):
                judge = label_mat[i] * (np.dot(omega, data_mat[i].T))
                if judge <= 0:
                    error
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值