bzoj3716/4251 [PA2014]Muzeum

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3716

http://www.lydsy.com/JudgeOnline/problem.php?id=4251

【题解】

非常妙的网络流转化

首先可以把警卫和宝藏看成最大权闭合子图,用最小割的那种建模方法,即一开始加进来所有宝藏的价值

然后S连宝藏,警卫连T,有覆盖关系的连inf

那么就是一个最小割,复杂度是$O(maxflow(n+m, nm)$,显然承受不了。

由于最小割和最大流等价,所以转化最大流考虑。

问题变为

那么按x从大到小排序,每次2种操作:加入一个物品;有一个警卫可以喷水给所有y小于它物品。

显然按照y从大到小喷最优,因为小的限制条件小。

用个set维护即可,注意set的时候lower_bound只能s.lower_bound(...),不能lower_bound(s.begin(), s.end(), ..)!!!

# include <set>
# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm>
// # include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int N = 2e5 + 10;
const int mod = 1e9+7;
const ll inf = 5e18;

inline int getint() {
    int x = 0, f = 1; char ch = getchar();
    while(!isdigit(ch)) {
        if(ch == '-') f = 0;
        ch = getchar();
    }
    while(isdigit(ch)) {
        x = (x<<3) + (x<<1) + ch - '0';
        ch = getchar();
    }
    return f ? x : -x;
}

int n, m, W, H;
struct pa {
    ll x, y; int v;
    pa () {} 
    pa (ll x, ll y, int v) : x(x), y(y), v(v) {}
    inline friend bool operator < (pa a, pa b) {
        return a.y < b.y || (a.y == b.y && a.x < b.x);
    }
}a[N], b[N];

struct option {
    ll x, y; int v, op;
    option() {}
    option(int op, ll x, ll y, int v) : op(op), x(x), y(y), v(v) {}
    inline friend bool operator < (option a, option b) {
        return a.x < b.x || (a.x == b.x && a.op > b.op);
    }
}p[N + N]; 

set<pa> s;
set<pa>::iterator it;

int main() { 
    ll ans = 0;
    cin >> n >> m >> W >> H;
    for (int i=1; i<=n; ++i) {
        a[i].x = 1ll * H * getint(), a[i].y = 1ll * W * getint(), a[i].v = getint(); 
        p[i] = option(1, a[i].x - a[i].y, a[i].x + a[i].y, a[i].v); ans += a[i].v; 
    }
    for (int i=1; i<=m; ++i) {
        b[i].x = 1ll * H * getint(), b[i].y = 1ll * W * getint(), b[i].v = getint(); 
        p[n + i] = option(2, b[i].x - b[i].y, b[i].x + b[i].y, b[i].v);
    }
    
    
    // maxflow
    int pn = n + m;
    sort(p+1, p+pn+1); s.clear(); 
    
    for (int i=pn; i; --i) {
        if(p[i].op == 1) s.insert(pa(p[i].x, p[i].y, p[i].v)); 
        else {
            int cv = p[i].v; 
            pa r = pa(inf, p[i].y, cv), t; 
            while(cv && s.size()) {
                it = s.upper_bound(r);
                if(it == s.begin()) break;
                --it; t = *it; s.erase(it); 
                int tmp = min(t.v, cv);
                cv -= tmp, t.v -= tmp; ans -= tmp;
                if(t.v > 0) s.insert(t); 
            }
        }
    }
    
    cout << ans;

    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/galaxies/p/bzoj3716.html

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值