Poisson Equation方程求解--转载

326 篇文章 2 订阅
183 篇文章 6 订阅

Poisson Equation

From Wikiversity

Contents

 [hide

Poisson's Equation[edit]

Definition[edit]

\nabla^2 u = f \Rightarrow \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_3^2} = f ~.

Description[edit]

Appears in almost every field of physics.

Solution to Case with 4 Homogeneous Boundary Conditions[edit]

Let's consider the following example, where u_{xx}+u_{yy}=F(x,y), (x,y) \in \lbrack 0,L \rbrack \times \lbrack 0,M \rbrack~. and the Dirichlet boundary conditions are as follows:

\begin{align} u(0,y)&=&0 \\ u(L,y)&=&0 \\ u(x,0)&=&0 \\ u(x,M)&=&0 \\\end{align}

In order to solve this equation, let's consider that the solution to the homogeneous equation will allow us to obtain a system of basis functions that satisfy the given boundary conditions. We start with the Laplace equation: u_{xx}+u_{yy}=0~.

Step 1: Separate Variables[edit]

Consider the solution to the Poisson equation as u(x,y)=X(x)Y(y)~. Separating variables as in the solution to the Laplace equation yields:
X''-\mu X=0
Y''+\mu Y=0

Step 2: Translate Boundary Conditions[edit]

As in the solution to the Laplace equation, translation of the boundary conditions yields:
\begin{alignat}{2} X(0) & = & 0\\ X(L) & = & 0\\ Y(0) & = & 0\\ Y(M) & = & 0\end{alignat}

Step 3: Solve Both SLPs[edit]

Because all of the boundary conditions are homogeneous, we can solve both SLPs separately.

\left .\begin{alignat}{2} X''-\mu X & = & 0 \\ X(0) & = & 0 \\ X(L) & = & 0\end{alignat}\right \} X_m(x) = \sin \frac{(m+1)\pi x}{L},m=0,1,2,\cdots

\left .\begin{alignat}{2} Y''-\mu Y & = & 0 \\ Y(0) & = & 0 \\ Y(M) & = & 0\end{alignat}\right \} Y_n(y) = \sin \frac{(n+1)\pi y}{M},n=0,1,2,\cdots

Step 4: Solve Non-homogeneous Equation[edit]

Consider the solution to the non-homogeneous equation as follows:

\begin{align} u(x,y) & := \sum_{m,n=0}^\infty a_{mn}X_m(x)Y_n(y) \\ & = \sum_{m,n=0}^\infty a_{mn}\sin \frac{(m+1)\pi x}{L}\sin \frac{(n+1)\pi y}{M}\end{align}

We substitute this into the Poisson equation and solve:

\begin{align}F(x,y)& = u_{xx}+u_{yy} \\& = \sum_{m,n=0}^\infty \left \{ a_{mn}\left \lbrack -\frac{(m+1)^2\pi^2}{L^2} \right \rbrack \sin \frac{(m+1)\pi x}{L} \sin \frac{(n+1)\pi y}{M} \right \} +\left \{ a_{mn}\left \lbrack -\frac{(n+1)^2\pi^2}{M^2} \right \rbrack \sin \frac{(m+1)\pi x}{L} \sin \frac{(n+1)\pi y}{M} \right \} \\& = \sum_{m,n=0}^\infty \underbrace{\left [ -a_{mn} \left ( \frac{(m+1)^2\pi^2}{L^2}+\frac{(n+1)^2\pi^2}{M^2} \right ) \right ]}_{A_{mn}} \sin \frac{(m+1)\pi x}{L} \sin \frac{(n+1)\pi y}{M}\end{align} \begin{align}A_{mn}&=\frac{\int\limits_0^M \int \limits_0^L F(x,y) \sin \frac{(m+1)\pi x}{L} \sin \frac{(n+1)\pi y}{M} dx dy}{\int\limits_0^M \sin^2 \frac{(n+1)\pi y}{M} dy \int\limits_0^L \sin^2 \frac{(m+1)\pi x}{L} dx } \\&=\frac{4}{LM}\int\limits_0^M \int \limits_0^L F(x,y) \sin \frac{(m+1)\pi x}{L} \sin \frac{(n+1)\pi y}{M} dx dy\end{align} a_{mn}=-\frac{4}{LM\left [ \frac{(m+1)^2\pi^2}{L^2} + \frac{(n+1)^2\pi^2}{M^2} \right ]}\int\limits_0^M \int \limits_0^L F(x,y) \sin \frac{(m+1)\pi x}{L} \sin \frac{(n+1)\pi y}{M} dx dy; m,n=0,1,2,\cdots

Solution to General Case with 4 Non-homogeneous Boundary Conditions[edit]

Let's consider the following example, where u_{xx}+u_{yy}=F(x,y), (x,y) \in \lbrack 0,L \rbrack \times \lbrack 0,M \rbrack~. and the boundary conditions are as follows:

\begin{align} u(x,0)&=f_1 \\ u(x,M)&=f_2 \\ u(0,y)&=f_3 \\ u(L,y)&=f_4\end{align}

The boundary conditions can be Dirichlet, Neumann or Robin type.

Step 1: Decompose Problem[edit]

For the Poisson equation, we must decompose the problem into 2 sub-problems and use superposition to combine the separate solutions into one complete solution.

  1. The first sub-problem is the homogeneous Laplace equation with the non-homogeneous boundary conditions. The individual conditions must retain their type (Dirichlet, Neumann or Robin type) in the sub-problem:

    \begin{cases}u_{xx}+u_{yy}=0 \\u(x,0)=f_1 \\u(x,M)=f_2 \\u(0,y)=f_3 \\u(L,y)=f_4\end{cases}
  2. The second sub-problem is the non-homogeneous Poisson equation with all homogeneous boundary conditions. The individual conditions must retain their type (Dirichlet, Neumann or Robin type) in the sub-problem:

    \begin{cases}u_{xx}+u_{yy}=F(x,y) \\u(x,0)=0 \\u(x,M)=0 \\u(0,y)=0 \\u(L,y)=0\end{cases}
Step 2: Solve Subproblems[edit]

Depending on how many boundary conditions are non-homogeneous, the Laplace equation problem will have to be subdivided into as many sub-problems. The Poisson sub-problem can be solved just as described above.

Step 3: Combine Solutions[edit]

The complete solution to the Poisson equation is the sum of the solution from the Laplace sub-problem u_1(x,y) and the homogeneous Poisson sub-problem u_2(x,y):
u(x,y)=u_1(x,y)+u_2(x,y)


来源: http://en.wikiversity.org/wiki/Poisson_Equation


  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值