• 博客(413)
  • 收藏
  • 关注

原创 AladdinEdu使用手册

AladdinEdu的使用主要分为三步,workshop建立 > 环境配置 > GPU调用,以下内容将围绕此流程展开。

2025-04-16 18:38:28 3085 3

原创 检索增强生成系统构建:从向量数据库到RAG pipeline设计

本文深入剖析检索增强生成(RAG)系统的完整架构与技术实现,系统阐述从向量数据库选型到RAG流水线设计的全链路解决方案。文章详细解析RAG系统如何通过外部知识检索有效缓解大模型幻觉问题,实现动态知识更新,覆盖文档处理、向量化检索、重排序、提示工程等核心模块。通过对比分析主流技术方案与实战案例,提供企业级RAG系统构建的最佳实践指南,并探讨RAG与Agent、多模态融合等前沿发展方向,为构建可靠、高效的下一代知识增强型AI系统提供完整技术参考。

2025-12-16 16:00:00 256

原创 视频理解技术栈:时序建模、动作识别与视频生成核心算法

本文系统性地阐述了视频理解的核心技术栈,旨在完成从静态图像分析到动态视频理解的认知跨越。文章首先剖析了视频数据相较于图像的独特性,重点讲解了时序建模的三大主流方法:双流网络、3D卷积与时空Transformer。随后,深入探讨了视频理解的核心任务——动作识别,解析了基于RGB、光流及骨骼数据的代表性算法演进。最后,前瞻性地介绍了视频生成技术,从帧预测到扩散模型,揭示了从视频感知到内容创造的技术趋势,为读者构建完整的动态视觉分析知识体系。

2025-12-16 12:00:00 377

原创 扩散模型原理三部曲:前向过程、反向推导与采样器加速

本文以“三部曲”形式系统拆解了扩散模型的核心原理。首先,在前向过程中揭示如何通过递进的加噪将数据转化为纯噪声,并推导出闭式采样公式。其次,在反向推导中,深入剖析了基于变分推断的训练目标,阐明如何训练去噪网络预测噪声以学习数据分布。最后,在采样器加速部分,解析了DDIM、DPM-Solver等关键方法如何通过重新参数化或求解微分方程,在数十步内完成高质量生成。通过串联数学推导与物理直觉,本文旨在清晰展现扩散模型如何将概率论、微分方程与深度学习巧妙结合,实现强大的生成能力。

2025-12-16 08:00:00 533

原创 生成对抗网络训练秘籍:模式坍塌、梯度消失的18种实战解决方案

生成对抗网络(GAN)的训练过程以不稳定和难以调试著称,其中最棘手的挑战莫过于模式坍塌与梯度消失。本文深度剖析了这两大问题的本质原因与表现形式,并系统性地整理了18种经过实战检验的解决方案。内容覆盖网络架构设计(如DCGAN、ResNet)、损失函数改进(WGAN、LSGAN、Hinge Loss)、正则化技术(梯度惩罚、谱归一化)、训练策略(双时间尺度更新、历史平均)以及评估方法(FID、IS),形成一套从理论到实践的完整应对体系,旨在帮助研究人员与工程师稳定高效地训练出高质量的生成模型。

2025-12-16 04:00:00 425

原创 大模型高效微调全解:Adapter、LoRA、QLoRA的原理与选型——低成本定制专属大模型

本文全面剖析大语言模型高效微调技术的演进路径与核心方法,系统阐述Adapter、LoRA、QLoRA三大主流参数高效微调(PEFT)技术的实现原理、数学基础与实践差异。通过深入解析各方法在显存占用、训练速度、模型性能等维度的权衡关系,结合具体应用场景分析,提供面向实际需求的选型决策框架。文章最后探讨PEFT技术在多模态扩展、自动化调优等领域的前沿发展方向,为研究者和开发者提供低成本定制专属大模型的完整技术指南。

2025-12-15 16:00:00 511

原创 自监督视觉学习:对比学习与掩码图像建模如何改变CV

本文系统阐述了自监督学习如何通过两种主流范式——对比学习与掩码图像建模——深刻变革计算机视觉领域,其核心价值在于大幅减少模型对昂贵人工标注数据的依赖。文章深入剖析了对比学习中构建正负样本对、优化特征不变性的核心思想与代表模型(MoCo、SimCLR),以及掩码图像建模中通过学习重建被掩盖图像部分来获取语义理解的原理与关键工作(MAE、BEiT)。通过对比两种范式的哲学差异、技术实现与应用影响,本文揭示了自监督学习如何推动计算机视觉从“数据标注驱动”迈向“任务通用表示学习”的新阶段。

2025-12-15 12:00:00 470

原创 《Attention Is All You Need》精读与复现:手撕Transformer编码器/解码器

本文对2017年里程碑论文《Attention Is All You Need》进行深度精读与完整代码复现,系统性地解析了Transformer这一深度学习时代基石的架构原理。文章不仅详细拆解了位置编码、缩放点积注意力、多头注意力、编码器/解码器层等核心组件的数学原理,还提供了从零开始的PyTorch实现,涵盖掩码机制、训练技巧与推理过程。通过理论与代码的紧密结合,帮助读者透彻理解Transformer如何彻底革新序列建模,并为掌握BERT、GPT等后续革命性模型奠定坚实基础。

2025-12-15 08:00:00 1533

原创 RNN的困境与救赎:LSTM/GRU门控机制详解,及与Transformer的对比

序列建模是人工智能处理时序与文本数据的核心。本文深入剖析了循环神经网络(RNN)在处理长序列时面临的梯度消失/爆炸与长期依赖困境,详细解读了长短期记忆网络(LSTM)与门控循环单元(GRU)的门控机制设计思想、数学原理与架构演化,阐明了它们如何通过精巧的门控结构实现对记忆的选择性保留与更新。进一步,文章系统对比了以RNN为代表的递归范式与以Transformer为代表的自注意力范式,从计算特性、建模能力与应用场景等维度,梳理了序列建模从过去到现在的技术演进脉络与核心思想变迁。

2025-12-15 04:00:00 530

原创 提示工程与上下文学习:思维链、自洽性与指令微调实战

本文系统阐述了驾驭大语言模型(LLM)的核心交互范式——提示工程与上下文学习。文章从基础定义与重要性出发,深入解析了上下文学习的Few-shot、Zero-shot能力及其原理。重点剖析了三大高阶技术:思维链引导模型进行分步推理,自洽性提升复杂问题解答的稳健性,以及指令微调(含RLHF)对齐模型与人类意图的工程实践。通过构建从基础技巧到融合策略的完整方法体系,并提供实战代码与黄金法则,本文旨在赋予读者有效激发大模型潜力、构建可靠AI应用的关键技能。

2025-12-14 18:15:00 787

原创 3D计算机视觉入门:点云处理、NeRF与三维重建基础

本文系统性地介绍了3D计算机视觉的核心基础技术,旨在引导读者从二维图像理解迈向三维空间感知。文章首先阐述了从2D到3D的范式转变,然后重点讲解三维数据的核心表示形式——点云,包括其特性、深度学习处理方法(PointNet/PointNet++)以及特征学习与分割。接着,深入剖析了神经辐射场(NeRF)这一革命性的神经渲染技术的工作原理、训练方法及主流变体。最后,探讨了三维重建的两大技术路径:基于多视图几何的传统方法及与深度学习结合的现代方法,为读者构建完整的3D视觉知识体系。

2025-12-14 12:00:00 728

原创 CNN架构进化史:从AlexNet到ConvNeXt,设计哲学的变革

本文系统梳理了卷积神经网络(CNN)从2012年AlexNet突破至2022年ConvNeXt复兴的十年演进史。文章超越了单纯的结构变体罗列,深入剖析了每个里程碑架构(AlexNet, VGG, GoogLeNet, ResNet, DenseNet, MobileNet, EfficientNet, ConvNeXt)背后的核心设计哲学与时代背景。探讨了从“深度优先”、“宽度并行”、“残差连接”到“轻量化”、“自动化”及最终的“现代化”等核心思想的变迁。揭示了CNN的发展不仅是技术堆砌,更是研究者对

2025-12-14 08:00:00 694

原创 因果推断基础:从相关性到因果性,Rubin模型与Do-Calculus初探

在数据驱动的时代,区分相关性与因果性已成为科学决策与下一代人工智能的核心挑战。本文系统阐述了因果推断的基础框架,重点剖析了统计学中的Rubin潜在结果模型与计算机科学中的结构因果模型及Do-Calculus。文章从“相关性不等于因果性”这一根本问题出发,深入探讨了反事实推理、识别假设、干预效应估计等核心概念,并论述了因果思维如何为机器学习带来可解释性、稳健性与泛化能力的革命性提升,为迈向强人工智能奠定必要的范式基础。

2025-12-14 04:00:00 601

原创 概率图模型入门:马尔可夫网络与贝叶斯网络的表示、推断与学习

概率图模型(PGM)将图论与概率论结合,提供了一种直观而强大的框架来表示、推断和学习复杂系统中的不确定性关系。本文系统性地介绍了概率图模型的两大核心支柱——贝叶斯网络(有向图模型)与马尔可夫网络(无向图模型),深入剖析了它们的图表示、条件独立性语义、参数化方法、概率推断算法(精确与近似)以及模型学习技术(参数学习与结构学习)。通过阐述模型的表示能力、推断原理与学习范式,本文旨在为读者构建关于结构化概率模型的完整知识体系,奠定其在人工智能、机器学习、生物信息学等领域的应用基石。

2025-12-13 14:27:13 929

原创 评估指标深水区:如何为你的业务选择正确的评估体系与AB测试方案

在人工智能与数据驱动的商业决策时代,模型性能的优越性并不直接等同于商业成功。本文深入探讨了评估指标体系与A/B测试方案设计这一“深水区”,旨在架起连接技术指标与商业价值的桥梁。文章系统性地分析了常见评估指标的局限性,提出了构建分层、多维、面向业务的评估体系的框架与方法,并详细阐述了如何设计严谨的A/B测试来验证商业假设。通过结合理论、实践案例与策略思考,为从业者提供一套将模型价值有效转化为可衡量商业成果的完整思路与行动指南。

2025-12-13 14:23:00 806

原创 项目分享 | Agent Lightning:零代码改动训练与优化你的AI智能体

Agent Lightning 是微软开源的一款通用AI智能体训练框架,主打“近乎零代码改动”即可对现有智能体进行强化学习等优化。它通过无侵入式数据收集与中心化存储架构,兼容主流开发框架,并支持多算法与选择性优化。该项目为AI智能体从静态执行迈向持续自进化提供了强大的基础设施和清晰的工程路径。

2025-12-12 15:49:19 246

原创 项目分享|AP2:让智能体学会安全支付的开源标准

Agent Payments Protocol (AP2) 是谷歌推出的开源协议,旨在为AI智能体之间的商业支付建立标准化框架。它定义了核心的交易数据类型与流程,并提供了丰富的场景示例与代码实现。该项目致力于解决智能体经济中的安全支付与信任问题,是构建未来可互操作、自动化商业生态的重要基础设施。

2025-12-12 15:19:44 413

原创 项目分享 | GLaDOS Personality Core:开源软硬件项目,将游戏AI角色带入现实

GLaDOS Personality Core 是一个将经典游戏AI角色GLaDOS带入现实世界的开源软硬件项目。它通过集成VAD、Whisper、本地LLM与流式TTS,实现了低于600ms的低延迟语音对话,并致力于在树莓派级硬件上运行。项目规划了完整的3D打印机体与动画系统,旨在最终打造出一个具有视觉、记忆和实体交互能力的AI伙伴,为AI实体化和交互式机器人开发提供了极富吸引力的开源蓝

2025-12-12 15:00:07 353

原创 项目分享 | Memori:一行代码为LLM注入SQL原生记忆引擎

Memori 是一款开创性的开源SQL原生AI记忆引擎,仅用一行代码即可为任何大语言模型赋予持久化、可查询的记忆能力。它将记忆存储在标准SQL数据库中,赋予开发者完全的数据控制权,并大幅降低成本。其智能拦截架构能自动完成上下文注入、信息提取与记忆优化,是构建具备长期记忆和个性化能力的AI应用的理想基础组件。

2025-12-12 14:41:44 261

原创 项目分享 | MineContext:主动式上下文感知AI伙伴

MineContext 是一款开源、主动感知上下文的AI桌面伙伴,通过屏幕截图理解用户数字环境,自动生成摘要、待办与活动记录。采用本地优先架构确保数据隐私,支持多源上下文扩展与自定义AI模型。项目基于Electron+FastAPI实现,适合知识工作者、创作者及开发者构建个人智能化信息工作流。

2025-12-12 14:28:38 379

原创 项目分享| n8n :超4000个自动化工作流,开箱即用

n8n Workflow Collection 是一个包含 4343 个即用型自动化工作流的开源项目,覆盖 365 种以上服务集成,提供在线搜索与一键下载。项目采用 FastAPI + SQLite FTS5 实现毫秒级检索,支持 Docker 部署与完整 API,兼顾性能、安全与易用性,适合企业、开发者快速构建自动化流程。

2025-12-12 14:09:43 285

原创 项目分享 | RLinf:专为模型后训练而设计的大规模强化学习框架

RLinf是一个开源、灵活的强化学习训练基础设施,专为VLA等大模型的后训练优化设计。它统一支持具身智能、数学推理、智能体训练等多场景,集成了主流模型、仿真器与算法。其创新架构实现了高效的分布式训练,在ManiSkill、LIBERO等基准上取得SOTA性能,显著降低了前沿RL研究的工程门槛。

2025-12-12 11:39:24 792

原创 项目分享 | SurfSense:连接个人知识库的下一代AI研究助手

SurfSense是一款开源、可自托管的AI研究助手与知识库平台。它不仅能像Perplexity一样进行联网搜索并返回引用,更能深度集成Notion、GitHub、Gmail等数十种外部工具,将个人知识库与全网信息打通。支持50+文件格式、高级RAG技术,并能20秒内将对话转为播客,是构建私有化“超级研究大脑”的强大工具。

2025-12-12 11:24:54 894

原创 项目分享|Tabby:打造你自己的智能代码补全服务

Tabby是一款开源、自托管的AI编程助手,提供媲美GitHub Copilot的代码补全、上下文聊天及知识问答功能。它支持消费级GPU,无需云端依赖,保障代码隐私,并具备企业级管理、多IDE集成和开放API,是企业构建自主、安全AI研发环境的理想选择。

2025-12-12 10:48:36 594

原创 无监督学习的现代应用:聚类与异常检测在真实业务场景中的落地

本文深入探讨无监督学习中聚类与异常检测两大核心技术在真实业务场景中的落地应用。文章系统阐述了从数据理解、算法选型到结果评估与业务融合的完整方法论,并通过金融风控、智能制造、网络安防、客户运营等多个领域的详细案例,展示了如何将算法理论转化为实际业务价值。同时,文章剖析了无监督学习在模型评估、可解释性和工程部署中面临的挑战,并提供了务实的解决方案与未来趋势展望,为从业者提供了一份超越理论的实战指南。

2025-12-11 20:10:21 730

原创 项目分享|Tinker Cookbook:你的大模型微调实战宝典

Tinker Cookbook是由Thinking Machines Lab推出的开源大模型微调工具集,包含`tinker`训练SDK与`tinker-cookbook`示例库。它通过API封装了分布式训练复杂性,提供对话、数学推理、RLHF、工具调用等多场景“食谱”,极大降低了定制AI模型的门槛,是研究者与开发者进行高效模型调优的利器。

2025-12-11 20:00:18 600

原创 论文分享|一网打尽12种模态:OmniVec2如何用统一Transformer重塑多模态学习?

本文提出了OmniVec2,一个基于Transformer的统一架构,用于大规模多模态多任务学习。该模型通过模态特定的分词器处理12种不同模态的数据(如图像、视频、音频、文本、点云、红外等),并利用共享的Transformer骨干和交叉注意力机制进行特征融合与知识共享。其创新的三阶段训练策略(单模态预训练、双模态预训练、多任务训练)实现了高效的跨模态学习。在25个基准数据集上的实验表明,OmniVec2在已见和未见模态上均达到或超越了最先进性能,展示了强大的泛化能力和作为通用多模态基础模型的潜力。

2025-12-11 19:55:41 585

原创 论文分享|抛弃路由,轻装上阵:一种无需路由的高效胶囊网络设计

本文提出了一种无需路由机制的高效胶囊网络设计。通过使用同质向量胶囊(HVCs)替代传统矩阵乘法,并结合多分支卷积结构,在MNIST手写数字分类任务上实现了新的最优性能:单模型准确率达99.83%,集成模型达99.87%。相比之前最好的胶囊网络,该设计参数减少5.5倍、训练轮数减少4倍,且无需重建子网络与复杂路由机制。研究证明,胶囊网络可通过更简洁的设计实现更高精度与效率,为其实际应用铺平道路。

2025-12-11 18:57:59 805

原创 论文分享|告别“重复造轮子”:一种持续进化的大规模多任务机器学习方法论

本文提出了一种新型机器学习系统开发方法论,旨在解决传统ML开发中资源碎片化、知识无法积累的问题。该方法将模型设计、训练与评估整合到一个持续扩展的多任务动态系统中,通过μ2Net+方法实现模型的结构化演化与效率优化。实验表明,该系统能联合学习124个图像分类任务,在保持精度的同时显著降低模型大小与计算成本。该方法为构建可持续进化的大规模AI系统提供了可行路径,尤其适用于持续学习与多任务场景。

2025-12-10 20:34:03 812

原创 特征工程的科学:从统计分析到基于深度学习的自动化特征构造

本文系统阐述特征工程的完整知识体系与实践方法论。从统计分析基础出发,深入解析数据预处理、单变量与多变量特征构造、特征选择等传统技术的原理与操作。重点探讨了基于深度学习与自动化机器学习的现代特征工程范式,包括嵌入技术、特征交叉自动化与端到端表示学习。通过构建统一的特征工程分层框架,结合详尽的实战调优指南,本文旨在将特征工程从经验驱动的“艺术”转变为系统化的“科学”,为数据科学家提供应对复杂现实问题的强大工具箱。

2025-12-10 16:04:04 615

原创 集成学习艺术:Bagging、Boosting与Stacking的深度对比与调优指南

本文系统性地剖析了集成学习三大核心范式:Bagging、Boosting与Stacking。深入探讨了其降低方差与偏差的理论基础,详细解读了随机森林、AdaBoost、GBDT/XGBoost等经典算法的演进与机制。通过多维度对比分析,揭示了不同方法的内在特性与适用场景。文章重点提供了从数据预处理、基学习器选择到超参数调优的完整工程实践指南,并结合前沿方向展望,阐述了集成学习在深度学习时代持续焕发生命力的原因,为读者掌握这一“经典但永不过时”的强大工具提供了全面参考。

2025-12-10 15:58:20 987

原创 贝叶斯机器学习实战:从概率图模型到变分推断与MCMC

本文系统阐述贝叶斯机器学习核心框架与实践方法。通过对比频率主义与贝叶斯范式的根本差异,引入不确定性建模的哲学基础。深入解析概率图模型(贝叶斯网络与马尔可夫网络)的表示与推断机制,重点剖析变分推断与马尔可夫链蒙特卡洛两大核心近似推断技术的工作原理、算法实现与适用场景。结合Pyro概率编程库的实战示例,展示贝叶斯模型构建、训练与预测的完整流程,并探讨贝叶斯深度学习、自动概率编程等前沿方向,为读者打开不确定性建模的大门。

2025-12-09 17:59:20 824

原创 梯度下降家族全览:从SGD到自适应优化器的演进与选择

本文系统阐述了深度学习模型训练中核心优化算法的演进历程与技术原理。从梯度下降的数学基础出发,深入剖析了随机梯度下降及其动量加速方法,重点解读了AdaGrad、RMSProp、Adam等自适应优化器的设计思想与算法机制。文章通过理论分析、可视化对比与工程实践指南,全面展示了不同优化器的性能特性与适用场景,并为读者提供了在不同深度学习任务中选择与调优优化器的实用策略,最后展望了优化算法领域的未来发展方向。

2025-12-09 17:24:34 831

原创 AIGC内容安全:深度学习在不良内容检测与过滤中的实践

本文深入探讨了AIGC(人工智能生成内容)时代面临的内容安全挑战,系统阐述了深度学习技术在不良内容检测与过滤中的核心原理与实践应用。文章首先剖析了AIGC带来的新型内容风险,随后重点解读了基于深度学习的多模态检测框架,包括文本、图像、音频与视频的识别技术,并详述了从数据采集到模型部署的完整流程。同时,文中分析了当前技术面临的挑战与应对策略,展望了生成模型检测、联邦学习、区块链存证等前沿方向,强调构建“技术+规范+治理”的综合防御体系对于维护健康数字生态的重要性。

2025-12-09 08:46:29 659

原创 智能驾驶感知全栈技术:摄像头、激光雷达与多传感器融合

本文全面剖析智能驾驶感知系统的全栈技术体系,深入探讨摄像头视觉感知、激光雷达点云处理以及多传感器深度融合的核心原理与工程实践。文章系统分析了前视摄像头、环视系统、固态/机械激光雷达的技术特性,详细阐述了目标检测、语义分割、点云分割等关键算法。重点研究了传感器标定、时间同步、数据融合(前融合、特征融合、后融合)等关键技术,并提供了完整的感知系统架构设计和工程实现方案,为智能驾驶感知技术研发提供全面参考。

2025-12-09 08:42:31 823

原创 AI for Science:AlphaFold2等科学计算模型的工程化部署

本文深入探讨AI for Science领域代表性模型AlphaFold2的工程化部署全流程。文章系统分析了科学计算模型与传统AI模型在部署上的核心差异,详细阐述了从蛋白质结构预测到实际部署面临的计算挑战、内存优化、推理加速等关键技术问题。通过具体的架构设计、性能优化策略和容器化部署方案,为研究人员和工程师提供了一套完整的科学计算模型生产级部署解决方案。

2025-12-08 17:51:06 2872 1

原创 推荐系统特征工程演进:从DeepFM到多模态大模型的架构升级

本文系统梳理了推荐系统特征工程从传统方法到深度学习,再到多模态大模型时代的技术演进路径。通过分析DeepFM的双塔架构、多兴趣建模机制,探讨了特征表示从人工设计到自动学习的转变过程。重点剖析了多模态特征融合技术、图神经网络增强方法,以及大语言模型带来的特征工程范式变革,为推荐系统架构升级提供了全面的技术视野和实践指南。

2025-12-08 10:26:15 675

原创 AI视频生成系统架构:基于Stable Video Diffusion的工程实践

本文深入探讨了基于Stable Video Diffusion的AI视频生成系统架构设计与工程实践。文章系统分析了SVD的核心技术原理,包括3D UNet架构、时空注意力机制和多帧一致性保障技术。详细介绍了从视频数据处理、模型训练优化到推理部署的全流程工程实现,涵盖硬件选型、性能优化、错误处理等实战经验。通过实际案例展示了SVD在不同场景下的应用效果,并展望了视频生成技术的未来发展方向。

2025-12-08 10:16:32 624

原创 低成本Finetuning实践:在单卡RTX 4090上微调70B大模型

本文深入探讨了在资源受限环境下微调超大规模语言模型的实用技术。通过分析QLoRA、LoRA等参数高效微调方法的核心原理,详细介绍了如何在单张RTX 4090(24GB显存)上实现对70B参数大模型的微调任务。文章涵盖了4位量化技术、梯度累积、模型分片等关键优化策略,并提供了完整的实践指南、代码示例和调参建议,为研究者和开发者提供了切实可行的低成本微调解决方案。

2025-12-08 10:00:26 749

原创 大模型服务网格:下一代AI推理基础设施的架构革命——深度解读“大模型服务网格:基于Kubernetes的分布式推理集群管理”

随着百亿、千亿参数大模型的广泛应用,传统单体式推理架构面临内存不足、资源利用率低、扩展困难等严峻挑战。本文提出了一种基于Kubernetes的大模型服务网格架构,将服务网格的微服务治理能力与大模型分布式推理需求相结合。该系统实现了智能负载均衡、动态模型分区、自适应批处理和多维弹性伸缩等核心功能,显著提升了大模型推理的吞吐量、降低延迟并提高资源利用率。实验表明,相较于传统部署方式,该架构在同等硬件条件下可实现最高3.2倍的吞吐量提升和40%的延迟降低,为大模型的高效生产化部署提供了创新解决方案。

2025-12-08 09:49:38 979

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除