时光真疯狂, 我一路执迷于匆忙.

那么,你是想放手一搏,还是等到年华老去,心中充满遗憾,孤独地迈向黄泉路?...

【NOIP2013模拟】水叮当的舞步

Description

给出一个N*N的网格,每个格子有它的颜色0~5。
每一次你可以选择一个颜色,然后把左上角的格子所在的联通块里的所有格子变成选择的那种颜色。这里的联通是指两个格子有公共边,并且颜色相同。
现在想问,最少需要多少次操作,才会使所有格子的颜色相同。
N<=8,数据组数<=20

Solution

玄学暴力题,各种无脑优化。
考虑到答案不会特别大,可以使用迭代加深。
设一个估价函数(高大上),表示最少还需要的步数,如果当前深度+估价函数>限制就退出。
复杂度玄学,O(跑得过),对于这类题,Czy大神有话要说

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define N 9
using namespace std;
int v[N][N],rev[N][N],a[N][N],id,n;
int g[4][2]={0,1,0,-1,1,0,-1,0};
void fill(int x,int y,int c) {
    v[x][y]=1;
    fo(i,0,3) {
        int xx=x+g[i][0],yy=y+g[i][1];
        if (xx>n||xx<1||yy>n||yy<1||v[xx][yy]==1) continue;
        v[xx][yy]=2;
        if (a[xx][yy]==c) fill(xx,yy,c);
    }
}
int pd() {
    int cnt=0;bool bz[6];memset(bz,0,sizeof(bz));
    fo(i,1,n) fo(j,1,n) if (v[i][j]!=1&&!bz[a[i][j]]) {
        bz[a[i][j]]=1;cnt++;
    }
    return cnt;
}
bool can(int c) {
    bool bz=0;
    fo(i,1,n) fo(j,1,n) if (v[i][j]==2&&a[i][j]==c) {
        fill(i,j,c);bz=1;
    }
    return bz;
}
bool dfs(int x) {
    int p=pd();
    if (x+p>id) return 0;
    if (!p) return 1;
    int rev[N][N];
    memcpy(rev,v,sizeof(rev));
    fo(i,0,5) {
        if (can(i)&&dfs(x+1)) return 1;
        memcpy(v,rev,sizeof(v));
    } 
    return 0;
}
int main() {
    for(scanf("%d",&n);n;scanf("%d",&n)) {
        fo(i,1,n) fo(j,1,n) scanf("%d",&a[i][j]);
        memset(v,0,sizeof(v));
        fill(1,1,a[1][1]);
        for(id=0;id<=n*n;id++) if (dfs(0)) break;
        printf("%d\n",id);
    }
}
阅读更多
版权声明:既然是蒟蒻写的文,那么各位大爷就将就着看吧~跑的比西方记者慢多了233 https://blog.csdn.net/alan_cty/article/details/51540433
个人分类: 暴力
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭