今天听了crazy和samjia的NOI杂(砸)题选讲,感觉自己萌萌哒~
于是就来怡情地写了这道题。
Description
额(⊙o⊙)…,这个不好说啊。(语文不好不好裱我)
还是贴图吧。
n<=10^5
Solution
咳咳,希望大家都看懂题了。
一个很明显的贪心思路就是,我们每天要不全买,要不全卖。
因为一有利益我们就去占,一有亏损我们就不碰。
那么我们可以有dp方程:
F[i]=max(x[j]∗a[i]+y[j]∗b[i],F[i−1])
因为你一天可以什么都不淦。
其中x[i]表示第i天最多能获得的A卷数量,y[i]表示B卷数量。
那么
x[i]=F[i]/(A[i]∗Rate[i]+B[i])∗Rate[i]
y[i]=F[i]/(A[i]∗Rate[i]+B[i])
这样Dp是N^2的,我们考虑优化。
设j是最优决策,那么
F[i]=x[j]∗a[i]+y[j]∗b[i]
于是
y[j]=−a[i]b[i]x[j]+F[i]b[i]
发现这是一次函数的形式。我们想让截距最大。
于是我们可以维护一个凸包,因为斜率一定,使截距最大的点一定在凸包上。
以x为x轴,y为y轴建立平面直角坐标系。
但是,x[i]和-a[i]/b[i]不见得单调。
所以我们就是要动态维护一个凸包,然后求某个斜率的位置。
splay大法好!splay大法好!splay大法好!
你每次找到i左边最后一个斜率使得它仍然递增的点,和右边第一个使得它递增的的点。
然后删点就好了。不要忘了判断加上这个点后是否还是凸包。
Code
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define N 100005
using namespace std;
typedef double db;
const db inf=0x7fffffff;
const db ep=1e-5;
int n,fa[N],t[N][2],root;
db f[N],x[N],y[N],a[N],b[N],r[N],lk[N],rk[N];
int son(int x) {
if (t[fa[x]][0]==x) return 0;else return 1;
}
void rotate(int x) {
int y=fa[x],z=son(x);fa[x]=fa[y];
if (fa[y]) t[fa[y]][son(y)]=x;
if (t[x][1-z]) fa[t[x][1-z]]=y;
fa[y]=x;t[y][z]=t[x][1-z];t[x][1-z]=y;
}
void splay(int x,int y) {
while (fa[x]!=y) {
if (fa[fa[x]]!=y)
if (son(x)==son(fa[x])) rotate(fa[x]);
else rotate(x);
rotate(x);
}
if (!y) root=x;
}
void insert(int &v,int f,int id) {
if (!v) {v=id;fa[v]=f;splay(v,0);return;}
if (x[id]<=x[v]+ep) insert(t[v][0],v,id);
else insert(t[v][1],v,id);
}
db getk(int i,int j) {
if (abs(x[j]-x[i])<ep) return -inf;
else return ((y[j]-y[i])/(x[j]-x[i]));
}
int pre(int x) {
int y=t[x][0],z=x;
while (y)
if (getk(y,x)<=lk[y]+ep) z=y,y=t[y][1];
else y=t[y][0];
return z;
}
int suc(int x) {
int y=t[x][1],z=x;
while (y)
if (getk(x,y)+ep>=rk[y]) z=y,y=t[y][0];
else y=t[y][1];
return z;
}
void updata(int x) {
splay(x,0);
if (t[x][0]) {
int left=pre(x);splay(left,x);t[left][1]=0;
lk[x]=rk[left]=getk(left,x);
} else lk[x]=inf;
if (t[x][1]) {
int right=suc(x);splay(right,x);t[right][0]=0;
rk[x]=lk[right]=getk(x,right);
} else rk[x]=-inf;
if (lk[x]<=rk[x]+ep) {
root=t[x][0];t[root][1]=t[x][1];
fa[t[x][1]]=t[x][0];fa[x]=0;
rk[root]=lk[t[root][1]]=getk(root,t[root][1]);
}
}
int find(int v,db k) {
if (!v) return 0;
if (lk[v]+ep>=k&&k+ep>=rk[v]) return v;
if (k>lk[v]) return find(t[v][0],k);
else return find(t[v][1],k);
}
int main() {
scanf("%d%lf",&n,&f[0]);
fo(i,1,n) scanf("%lf%lf%lf",&a[i],&b[i],&r[i]);
fo(i,1,n) {
int j=find(root,-a[i]/b[i]);
f[i]=max(f[i-1],x[j]*a[i]+y[j]*b[i]);
y[i]=f[i]/(a[i]*r[i]+b[i]);
x[i]=y[i]*r[i];
insert(root,0,i);
updata(i);
}
printf("%.3lf",f[n]);
}