Description
有一个数列生成器,给定正整数n,m,a,b和实数p时,它会生成一个满足以下条件的数列:
(1)数列长度为n;
(2)对于数列中的每个元素,它有p的概率为a*rand(),有1-p的概率为b*rand(),其中rand()是一个在[1,m]中均匀随机的整数。有t组数据,每组数据给定正整数n,m以及一个按以上方式生成的数列,你需要求出a和b的值。保证1<=a<=b<=m。
t<=300,n<=5000,m<=1e9
Solution
其实就是让我们把原序列划分成两个集合,使得这两个集合都有一个<=m的gcd,并且每个数/gcd<=m
考虑每次随机两个数x,y,那么他们在同一个集合的概率不会小于1/2
我们直接令a=gcd(x,y),然后把所有一定不能由a生成的数求gcd得到b,然后check一下是否合法。
注意a和b相等的情况可能会出错(辣鸡spj)
随机种子还是要好好选(不能选什么会T 1s的)
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long ll;
ll read() {
char ch;
for(ch=getchar();ch<'0'||ch>'9';ch=getchar());
ll x=ch-'0';
for(ch=getchar();ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x;
}
const int N=5*1e3+5;
ll m,p[N];
ll gcd(ll x,ll y) {return y?gcd(y,x%y):x;}
int main() {
freopen("number.in","r",stdin);
freopen("number.out","w",stdout);
read();srand(20180313);
for(int ty=read();ty;ty--) {
int n=read();m=read();
fo(i,1,n) p[i]=read();
ll D=p[1];fo(i,2,n) D=gcd(D,p[i]);
fo(i,1,n) p[i]/=D;
bool ok=1;
fo(i,1,n) ok&=p[i]<=m;
if (ok) {
printf("%lld %lld\n",D,D);
continue;
}
for(;;) {
int x=rand()%n+1,y=rand()%n+1;
if (x==y) continue;
ll a=gcd(p[x],p[y]);
if (a*D>m) continue;
ll b=0;
fo(i,1,n)
if (p[i]%a||p[i]/a>m) {
if (!b) b=p[i];
else b=gcd(b,p[i]);
}
if (!b) b=a;
if (b*D>m) continue;
bool ok=1;
fo(i,1,n) {
if (p[i]%a&&p[i]%b) {ok=0;break;}
ll nn=m+1,mm=m+1;
if (!(p[i]%a)) nn=p[i]/a;
if (!(p[i]%b)) mm=p[i]/b;
if (nn>m&&mm>m) {ok=0;break;}
}
if (ok) {
if (a>b) swap(a,b);
printf("%lld %lld\n",a*D,b*D);
break;
}
}
}
}