MySQL高级(3) 索引入门
索引介绍
为什么要使用索引?
查询快
索引的概念和分类
概念
是帮助MySQL搞笑获取数据的数据结构,可以简单的理解为"排好序的快速查找数据结构".
在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,
这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引
简单的理解,就是使用B+树构建的一个"目录"
为什么使用B+树而不是B树?
理论上B树的查找速度要比B+树快, 但是在有限的内存中, B+树可以存储更多的数据, 这样可以提高索引的命中率, 所以MySQL选择了B+树
举例
如图是一个B+树,非叶子节点存储的都是数据范围,只有叶子节点存储的是确切的值和对应的指针(指向物理地址),数据库执行查询时,不断的从根节点向下查找该值所在的范围,知道查找到叶子节点,然后读取相应的物理地址
一般来说索引占用内存也很大,不可能全都存储在内存中,所以索引一般以索引文件的形式存储在磁盘上
分类
聚簇索引
按照顺序排列, 如id自增的主键
非聚簇索引
不按照顺序排列, 一般在数据库中, 除了主键是聚簇索引, 其他都是非聚簇索引
单值索引
只有一个字段作为索引
唯一索引
该索引的值是唯一的(unique)
主键索引
默认主键自动创建索引
复合索引
多个字段作为索引
索引的优缺点
优点
- 提高了数据检索的效率,降低数据的IO成本
- 降低数据排序的成本,降低CPU的消耗
缺点
- 实际上索引也是一张表,保存了主键与索引字段,并指向实体表的记录,要占用空间
- 虽然大大提高了查询速度,但是会降低更新速度,如对表进行
insert
,update
和delete
操作时,MySQL不仅要保存数据,还要保存索引
索引入门
创建的创建和删除
创建索引
- 一般语法(最常用)
create [unique] index <索引名> on <表名>(<索引字段列表>);
# 或者
alter table <表名> add index <索引名> (<索引字段列表>);
举例
create index idx_age_dep_name on emp(age,dep,name);
# 或者
alter table emp add index idx_age_dep_name (age,dep,name);
- 创建一个主键索引(本质上是添加或更换一个表的主键)
alter table <表名> add primary key(<索引字段列表>);
- 创建一个唯一索引
alter table <表名> add unique <索引名>(<索引字段列表>);
- 添加普通索引
alter table <表名> add index <索引名>(<索引字段列表>);
- 添加全文索引
alter table <表名> add fulltext <索引名>(<索引字段列表>);
- 查看指定表中的索引
show index from <表名>;
默认情况下,如果一个表有主键,会自动创建一个主键索引
删除索引
- 删除索引
drop index <索引名称> on <表名>;
索引的命名规范
一般使用idx
开头,后面跟表名和相应的字段名,如果有多个字段名,则采用驼峰命名法,即idx_表名_字段名
举例 1 在`user`表中使用`name`字段建立单值索引
create index idx_user_name on user(name);
举例 2 在`user`表中使用`name`和`email`字段建立复合索引
create index idx_user_nameEmail user(name,email);
创建索引的情景
需要建立索引的情况
- 主键自动建立唯一索引
- 频繁作为查询条件的字段应该建立索引
- 查询中与其他表关联的字段,外键关系建立索引
- 单键/组合索引的选择问题,组合索引性价比更高(默认情况下MySQL只会选择一个索引)
- 查询中排序的字段,排序字段若通过索引去访问可以大大提高排序速度
- 查询中统计或者分组的字段
不需要建立索引的情况
- 表记录太少
- 经常增删改查的表或者字段
- where条件里用不到的字段
- 过滤性不好的,即字段内容比较单一,例如性别
索引选择性公式
索引的选择性是指索引列中不同记录的数据与表中记录数的比,例如一个表中有1000条记录,表索引中有800个不同值值,那么这个索引的选择性就是800/1000=0.8,一个索引的选择性越接近于1,这个索引的效率就越高
Explain (执行计划)
执行计划介绍
概念
使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的。从而分析你的查询语句或是表结构的性能瓶颈
作用(Explain能查询什么)
对于一张表,我们是不是应该建立索引呢,一般来说我们需要了解整个SQL语句的执行过程,然后根据实际情况来判断是否要建立索引,Explain
指令可以帮助我们来查看SQL语句的执行计划(就是SQL语句是怎么执行的),Explain指令可以:
- 表的读取顺序
- 可以使用的索引
- 数据读取操作的操作类型
- 哪些索引被实际使用
- 表之间的引用
- 每张表有多少行被物理查询
Explain的使用
语法
explain
<SQL语句>
Explain结果各个字段的含义和说明
执行一个SQL语句,发现输出的内容有以下字段:
id | select查询的序列号,包含一组数字,表示查询中执行select自居或操作表的顺序 |
select_type | 查询类型 |
table | 说明这一行数据是关于哪张表的 |
type | 访问类型 |
partitions | 分区表中的命中情况, 不是分区表时, 该项为null |
key | 实际使用的索引, 如果为null , 则没有使用索引 |
key_len | 表示索引中使用的字节数 |
rows | 执行SQL语句实际扫描的行数, 越小越好 |
ref | 显示索引的哪一行被使用了 |
filtered | 表示存储引擎返回的数据在server层过滤后, 剩下多少满足查询的记录数量的比例(百分比) |
==extra= | 附加的其他信息 |
id (可以看做权重,权重越大的表,越先读取,权重一样就按顺序执行)
- 如果id相同,从上到下执行
举例
有t1,t2,t3三张表,执行某次次关联查询的explain结果如下
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cNKESrE9-1585311663026)(MySQL%E9%AB%98%E7%BA%A7(2)].assets/image-20200214192140752.png)那么表的读取顺序就是 t1->t3->t2
- 如果id不同,先执行id大的,再执行小的,一般来说,有子查询的SQL语句会先执行子查询,所以子查询的id值会大
举例
同上,某次执行结果如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rUfp7xlq-1585311663026)(MySQL%E9%AB%98%E7%BA%A7(2)].assets/image-20200214192547243.png)那么表的读取顺序是 t3->t1->t2
- 如果既有id一样的又有不一样的,先按照id从大到小执行,然后再按照顺序从上到下执行
举例
同上,某次执行结果如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vRvZFMSn-1585311663028)(MySQL%E9%AB%98%E7%BA%A7(2)].assets/image-20200214193158599.png)
表的读取顺序是: t3->derived2->t2,其中derived2是衍生表,下面
select_type
中会介绍到
注意
- 相同id值的表,读取顺序不一定按照表的书写顺序来读取,就比如第一个举例中,表的书写顺序是
select * from t1 innerjoin t2 inner join t3
,但是实际读取的顺序是 t1->t3->t2- id号每个号码表示一次独立的查询,一个SQL的查询次数越少越好
select_type
- SIMPLE 简单查询
简单的select查询,查询中不包含子查询或者UNION
- PRIMARY 主要查询
查询中若包含任何子查询部分,最外层查询则被标记为PRIMARY ,一般来说PRIMARY 是最后加载的那个
- DERIVED 衍生查询
在FROM
后面包含的子查询被标记为DEPENDENT (衍生表),说白了就是一个临时表
- SUBQUERY 子查询
在SELECT
或WHERE
列表中包含了子查询, 但是WHERE条件是等于
explain select t1.id from t1
where t1.id=
(
select t2.id from t2 where t2.name="小明"
)
- DEPENDENT SUBQUERY 依赖子查询
在SELECT
或WHERE
列表中包含了子查询, 但是WHERE条件是
explain select t1.id from t1
where t1.id in
(
select t2.id from t2 where t2.name="小明"
)
- UNCACHEABLE SUBQUERY 不可用缓存的子查询
表示当前子查询不使用缓存, 比如当前SQL语句中有sql变量, 就不使用缓存
举例
explain select *
from t1
where id = (
select id from t2 where t2.id=@@sort_buffer_size
);
- UNION
若第二个SELECT出现在UNION之后,则被标记为UNION;
若UNION包含在FROM子句的子查询中,外层SELECT将被标记为DERIVED
- UNION RESULT
从UNION表获取结果的SELECT,通俗的讲就是使用了union联合查询之后的结果
type *
system>const>eq_ref>fulltext>ref_or_null>index_merge>unique_subquery>index_subquery>reange>index>all
- system
表只有一行记录(等于系统表),这是const类型的特例,平时不会出现,可以忽略不计
- const
表示通过索引一次就找到了,const用于比较primary key或者unque索引,因为只匹配一行数据,所以很快,例如将主键作为where的查询条件,MySQL将会将该查询转换为一个常量
举例 此时t1表中只有一个id为1的行
select * from t1 where id=1;
- eq_ref
唯一性索引扫描,对于每个索引键,表中只有一条记录与之匹配,常见于主键或唯一索引扫描
举例 在匹配时,t2表中只有一条记录,且这条记录刚好与t1.id匹配
explain select * from t1,t2 where t1.id=t2.id;
- ref
非唯一性扫描,返回匹配某个单独值的所有行,本质上也是一种索引访问,它返回的是所有匹配某个单独值的行,然而,它可能会找到多个符合条件的行,所以它应该数据查找和扫描的混合体
- index_merge
合并索引, 例如当查询条件使用了or
, 且or的两边都是索引, 这个时候就会出现index_merge
- ref_or_null
对于某个字段即需要关联条件, 也需要null值的情况下
where t.id=null or t.id=1;
- index_subquery
利用索引来关联子查询, 不在全表扫描, 即子查询用到了索引
- unique_subquery
子查询中的唯一索引
explain select *
from t
where t.id in (
select t.id from t # id是主键, 全局唯一
)
- range 可能需要优化
一般是使用了between,<,>,in
等查询
- index 可能需要优化
表示SQL语句使用了索引,但是没有用过索引进行过滤(即where或having后面没有使用索引), 一般是覆盖索引或者是利用索引进行了排序分组
- all 可能需要优化
表示遍历了整张表, 当出现all时, 表示可能需要建立索引了
possible keys
可以使用的索引
key
实际使用的索引, 如果为null
, 则没有使用索引
key_len *
表示where 条件中使用到索引的字节数, 可以通过该列计算查询中使用的索引的长度, 可以帮我们检查是否充分利用了索引
理论上key_len的数值越大越好, 比如使用了相同的复合索引, key_len的值越大, 说明命中的索引越多
rows *
执行SQL语句实际扫描的行数, 越小越好
ref
显示索引的哪一行被使用了, 如果可能的话, 是一个常数, 通常作用不大
filtered
表示存储引擎返回的数据在server层过滤后, 剩下多少满足查询的记录数量的比例(百分比), 作用不大
Extra *
包含不适合在其他列中显示但是十分重要的额外信息
- using filesort
没有使用索引排序, 这种情况下效率较慢, 即order by
后面没有使用索引
- using temporary
group by
没有使用索引, 因为group by 的机制是先进行排序, 后进行分组, 所以这里如果不使用索引, 会极大的消耗性能
- using join buffer
关联查询时, 关联字段(on
)没有用到索引
- impossible where
sql 逻辑出现错误, 比如: 大于201且小于10
- using index
表示相应的select操作中使用了覆盖索引(covering Index), 避免了访问了表的数据行, 效率高!
- using where
表名使用了where过滤
- select tables optimized away
用到了优化器