Halcon学习笔记:3D_coordinates(3D标定)

Halcon学习笔记:3D_coordinates(3D标定)

欢迎有兴趣的朋友一起学习,代码理解注释有问题的可以告诉我,一起讨论,共同进步。

	*初始化程序,
	dev_close_window()			*关闭窗口
	dev_open_window(			*打开窗口
		0*左上角行坐标位置
		0*左上角列坐标位置
		768*宽度768像素
		576*高度576像素
		‘black’, 								*黑色背景
		WindowHandle)							*句柄是WindowHandle。
	dev_update_off()			*关闭画面更新
	dev_set_draw(‘margin’)	*设置区域的填充模式为边缘
	dev_set_line(3)			*设置绘图的线宽为3个像素
	set_display_font(			*设置窗口windowHandle中的字体
		windowHandle, 							*
		14, 									*大小14
		‘mono’, 								*mono字体
		‘true, 								*粗体
		‘false)								*无下划线
	CalTabDescrFile := ‘caltab_big.descr’*标定相机,标定板描述文件名
	StartCamPar := [			*相机初始参数
		0.008, 									*焦距0.008
		0 , 									*畸变大小0
		0.0000086,								*像元宽是0.00000860.0000086, 								*像元高是0.0000086384, 									*相机坐标原点在384像素列,X288, 									*相机坐标原点在288像素行,Y768, 									*图片宽768像素
		576]									*图片高576像素
	create_calib_data(		*创建标定数据模型CalibDataID
		‘calibration_object’, 				*标定类型
		1, 										*相机个数
		1, 										*标定项目个数
		CalibDataID) 							*标定句柄
	set_calib_data_cam_param(		*设置相机初始内参
		CalibDataID, 							*标定句柄
		0, 										*相机序号
		‘area_scan_division’, 				*相机模型类型
		StartCamPar)							*相机参数
	set_calib_data_calib_object(	*设置相机标定板参数
		CalibDataID, 							*标定句柄
		0, 										*标定板索引
		CalTabDescrFile)						*标定板文件
	NumImages :=10					*图片数量
	for I := 1 to NumImages by 1	*循环读取图片并加载到标定模型中
		
		read_image(				*读取图片
			Image, 										*输出图片
			‘calib/calib-3d-coord-+ I$’02d’)		*文件路径
		dev_display(Image)			*显示图片
		*要显示的字符串	
		Message := ‘Find calibration plate in\nall calibration images(+ I +/+ NumImages +)disp_message(				*显示字符串在窗口中
			WindowHandle, 						*窗口句柄
			Message, 							*字符串
			‘window’, 							*窗口
			12, 								*字符串显示的位置行坐标
			12, 								*字符串显示的位置列坐标
			‘black’, 							*黑色字体
			‘true)								*有字体背景颜色
		find_calib_object(		*找到标定板
			Image, 								*输入图片
			CalibDataID, 						*标定句柄
			0, 									*相机索引
			0, 									*标定板索引
			I-1, 								*校准对象在标定数据模型中位置索引
			[ ], 								*默认参数名
			[ ])								*默认参数值
		get_calib_data(			*获取在校准数据模型中的数据
			CalibDataID, 						*标定句柄
			‘camera’, 							*数据类别
			0, 									*相机索引0
			‘init_params’, 					*参数名
			StartCamPar)						*参数值
		get_calib_data_observ_points(	*在校准数据模型中获取 mask‘点‘ 的数据
			CalibDataID, 						*标定句柄
			0, 									*相机索引
			0, 									*标定板索引
			I-1, 								*校准对象在标定数据模型中位置索引
			Row, 								*‘点‘的行坐标
			Column, 							*‘点‘的列坐标
			Index, 								*’点‘在标定板中的索引
			Pose)								*校准对象相对于相机的估算姿态
		get_calib_data_observ_contours(	*获取当前图像中标定板的XLD信息
			Contours, 							*XLD轮廓
			CalibDataID, 						*标定句柄
			‘caltab’, 							*数据类别
			0, 									*相机索引
			0, 									*标定板索引
			I-1)								*校准对象在标定数据模型中位置索引
		gen_cross_contour_xld(	*为输入的每一个点生成十字形
			Cross, 								*生成的XLD轮廓Cross
			Row, 								*‘点’行坐标
			Column, 							*‘点’列坐标
			6, 									*十字形长度6
			0.785398)							*十字形旋转弧度
		dev_set_color(‘geen’)		*设置颜色‘绿’
		dev_display(Contours)		*显示轮廓Contours
		dev_set_color(‘yellow’)	*设置颜色‘黄’
		dev_display(Cross)			*显示轮廓 Cross
	endfor
	calibrate_cameras(			*执行标定
		CalibDataID, 							*标定句柄
		Error)									*标定误差
	get_calib_data(				*获取参数
		CalibDataID, 							*标定句柄
		‘camera’, 								*数据类别
		0, 										*相机索引
		‘params’, 								*参数名
		CamParam)								*参数值
	*执行测量
	for I := 1 to NumImages by 1
		read_image(				*读取图片
			Image, 								*输出图片
			‘calib/calib-3d-coord-+ I$’02d’)*图片路径
		get_measure_positions(	*获取标定板中心位置以及中心所在宽度线的角度及宽度
			Image, 								*输入图片
			PlateRegion, 						*标定板的外框
			CalibDataID, 						*标定句柄
			I, 									*姿态索引
			Distance, 							*外框水平距离
			Phi, 								*角度
			RowCenter, 						*外框中心点行坐标
			ColumnCenter)						*外框中心点列坐标
		gen_rectangle2_contour_xld(	*生成矩形
			Rectangle, 						*生成的矩形
			RowCenter, 						*矩形中心行坐标
			ColumnCenter, 						*矩形中心列坐标
			Phi,								*矩形的水平方向角度
			Distance * 0.52, 					*矩形半宽度
			8)									*矩形半高度
		gen_measure_rectangle2(		*生成测量矩形
			RowCenter, 						*矩形中心行坐标RowCenter
			ColumnCenter, 						*矩形中心列坐标ColumnCenter
			Phi, 								*矩形的水平方向角度Phi
			Distance * 0.52, 					*矩形半宽度
			8,									*矩形半高度8
			768, 								*测量图片的半宽度768
			576, 								*测量图片的半高度576
			‘nearest_neighbor’, 				*插值类型‘nearest_neighbor’
			MeasureHandle)						*测量句柄MeasureHandle
		measure_pos(				*开始测量
			Image, 								*输入图片
			MeasureHandle, 					*测量句柄
			1, 									*高斯滤波参数
			40, 								*边缘强度控制阈值
			‘all’, 								*边界方向
			‘all’, 								*寻点模式
			RowEdge, 							*测到的中心点行坐标
			ColumnEdge, 						*测到的中心点列坐标
			Amplitude, 						*边缘强度值
			Distance1)							*连续边之间的距离
		close_measure(MeasureHandle)	*关闭测量矩形句柄
		Rows := [ RowEdge[0], RowEdge[|RowEdge| - 1] ]				*获取测量点的首尾点行坐标
		Columns := [ ColumnEdge[0], ColumnEdge[ |RowEdge| - 1] ]		*获取测量点的首尾点列坐标
		gen_cross_contour_xld(		*生成XLD轮廓
			Cross, 								*生成十字形轮廓
			Rows, 								*轮廓的行坐标
			Columns, 							*轮廓的列坐标
			16, 								*十字形的长度
			Phi)								*十字形角度
		get_calib_data(			*获取校准的数据
			CalibDataID, 						*标定句柄
			‘calib_obj_pose’, 					*数据类别,相机位姿
			[0, I-1], 							*数据索引
			‘pose’, 							*数据名
			Pose)								*数据值
		image_points_to_world_plane(	*将图像点转换为世界坐标系的平面z = 0
			CamParam, 							*相机参数
			Pose, 								*姿态
			Rows, 								*图像中的点行
			Columns, 							*图像中的点列
			‘m’, 								*比例尺‘m’米
			SX, 								*世界坐标中X
			SY)									*世界坐标中Y
		distance_pp (				* 测量两点距离
			SY[0], 								*第一点YSX[0], 								*第一点XSY[1], 								*第二点YSX[1], 								*第二点X值
			Width)								*输出距离
		*显示测量结果
		dev_display(Image)			*显示图片Image
		dev_set_color(‘white’)	*设置绘图的颜色为白色
		dev_set_line_width(3)		*设置绘图的线宽为3像素
		dev_display(Rectangle)	*显示矩形Rectangle
		dev_set_color(‘green’)	*设置绘图的颜色为绿色
		dev_set_draw(‘fill’)		*设置绘制的方式为填充
		dev_set_line_width(2)		*设置绘图的线宽为2像素
		dev_display(Cross)			*显示XLD图形Cross
		dev_set_draw(‘margin’)	*设置绘制方式为边缘
		disp_message(				*显示测量信息
			WindowHandle, 						*窗口句柄
			‘Width =+ (Width * 100)$’8.3f’ + ‘cm’, 	*信息
			‘window’, 							*窗口
			12, 								*信息显示位置行坐标
			12, 								*信息显示位置列坐标
			‘black’, 							*黑色字体
			‘true)								*有字体背景颜色
		disp_continue_message(	*显示继续信息
			WindowHandle, 						*窗口句柄
			‘black’, 							*黑色字体
			‘true)								*有字体背景颜色
		stop()						*程序暂停
		
		*测量标定板的marks‘点‘ 大小
		erosion_circle(			*腐蚀图片
			PlateRegion, 						*输入区域
			ROI, 								*输出ROI
			17.5)								*腐蚀半径
		reduce_domain(				*裁剪图片
			Image, 								*输入图片
			ROI, 								*要裁剪的区域
			ImageReduced)						*输出裁剪后的区域
		edges_sub_pix(				*提取边缘,大于高阈值的一定是边缘
			ImageReduced, 						*输入图像
			Edges, 								*输出边缘
			‘canny’, 							*滤波器
			1, 									*平滑度
			20, 								*低阈值
			60)									*高阈值
		select_contours_xld(		*筛选轮廓
			Edges, 								*输入边缘
			SelectedEdges, 					*输出边缘
			‘contour_length’, 					*轮廓特征,轮廓长度
			20, 								*最小值
			99999999, 							*最大值
			-0.5, 								*用不到的参数
			0.5)								*用不到的参数
		fit_ellipse_contour_xld(	*生成逼近XLD轮廓线的椭圆
			SelectedEdges, 					*输入轮廓
			‘fitzgibbon’, 						*拟合算法
			-1, 								*用于计算的最大轮廓点个数
			2, 									*一个轮廓的末尾点最大间距为2被认为是闭合
			0, 									*忽略始末点的个数
			200, 								*用于Voss方法的圆形段数
			3, 									*迭代最大次数
			2, 									*裁剪因子
			Row, 								*输出椭圆的中心行坐标
			Column, 							*输出椭圆的中心列坐标
			Phi, 								*输出椭圆主轴方向弧度
			Radius1, 							*长半轴长度
			Radius2, 							*短半轴长度
			StartPhi, 							*起始点方向弧度
			EndPhi, 							*结束点方向弧度
			PointOrder)						*边界点次序
		MeanRadius1 := mean(Radius1)		*长半轴平均长度
		MeanRadius2 := mean(Radius2)		*短半轴平均长度
		DevRadius1 := deviation(Radius1)	*长半轴标准差
		DevRadius2 := deviation(Radius2)	*短半轴标准差
		contour _to_world_plane_xld(		*将图片中轮廓坐标转换到世界坐标系中Z=0
			SelectedEdges, 					*输入轮廓
			WorldCircles, 						*输出轮廓
			CamParam, 							*相机参数
			Pose, 								*输出位姿
			‘mm’)								*输出单位
		fit_ellipse_contour_xld(	*拟合椭圆
			WorldCircles,  					*输入轮廓
			‘fitzgibbon’, 						*拟合算法
			-1, 								*用于计算的最大轮廓点个数
			2, 									*一个轮廓的末尾点最大间距为2被认为是闭合
			0,  								*忽略始末点的个数
			200,  								*用于Voss方法的圆形段数
			3,  								*迭代最大次数
			2, 									*裁剪因子
			Row, 								*输出椭圆的中心行坐标
			Column, 							*输出椭圆的中心列坐标
			Phi, 								*输出椭圆主轴方向弧度
			RadiusW1, 							*长半轴长度
			RadiusW2, 							*短半轴长度
			StartPhi, 							*起始点方向弧度
			EndPhi, 							*结束点方向弧度
			PointOrder)						*边界点次序
		MeanRadiusW1 := mean(RadiusW1)	*计算平均值
		MeanRadiusW2 := mean(RadiusW2)	*计算平均值
		DevRadiusW1 := deviation(RadiusW1)*计算标准差
		DevRadiusW2 := deviation(RadiusW2)*计算标准差
		dev_display(Image)			*显示图片
		dev_set_color(‘yellow’)	*设置绘制颜色,黄色
		dev_set_line_width(3)		*设置绘制宽度
		dev_display(SelectedEdges)*显示轮廓
		Message[0] := 
			'                    Mean Radius1; Mean Radius2; (Standard deviations [%])'
		Message[1] := 
			'Image coordinates:       ' 
			+ MeanRadius1$'5.2f' 
			+ 'px; ' 
			+ MeanRadius2$'5.2f' 
			+ 'px            (' 
			+ (DevRadius1 / MeanRadius1 * 100)$'4.2f' 
			+ ', ' 
			+ (DevRadius2 / MeanRadius2 * 100)$'4.2f' 
			+ ')'
		Message[2] := 'World coordinates:       ' 
			+ (MeanRadiusW1 / 10)$'5.2f' 
			+ 'cm; ' 
			+ (MeanRadiusW2 / 10)$'5.2f' 
			+ 'cm            (' 
			+ (DevRadiusW1 / MeanRadiusW1 * 100)$'4.2f' 
			+ ', ' 
			+ (DevRadiusW2 / MeanRadiusW2 * 100)$'4.2f' 
			+ ')'
		disp_message(			*显示消息
			WindowHandle, 							*窗口句柄
			Message, 								*消息
			‘window’, 								*窗口
			12, 									*消息显示位置行坐标
			12, 									*消息显示位置列坐标
			‘black’ 								*黑色字体
			‘true)									*有背景颜色
		if(I < 10)
			disp_continue_message(	*显示继续信息
				WwindowHandle, 					*窗口句柄
				‘black’, 							*黑色字体
				‘true)								*有背景颜色
			stop()				*程序暂停
		endif
	endfor
	clear_calib_data(CalibDataID)	*清理标定数据模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值