时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld
题目描述
珂朵莉给你一个有根树,求有多少个子树满足其内部节点编号在值域上连续
一些数在值域上连续的意思即其在值域上构成一个连续的区间
输入描述:
第一行有一个整数n,表示树的节点数。 接下来n–1行,每行两个整数x,y,表示存在一条从x到y的有向边。 输入保证是一棵有根树。
输出描述:
输出一个数表示答案
示例1
输入
5 2 3 2 1 2 4 4 5
输出
5
说明
节点1子树中编号为1,值域连续 节点3子树中编号为3,值域连续 节点5子树中编号为5,值域连续 节点4子树中编号为4,5,值域连续 节点2子树中编号为1,2,3,4,5,值域连续
备注:
对于100%的数据,有n <=100000
#include<bits/stdc++.h> bool b[100002]; int n,a[100002][3]; using namespace std; vector<int> g[100002]; void dfs(int i) { if(a[i][1]!=-3) return; int L=g[i].size(); int min1=i,max1=i,k=1; for(int j=0;j<L;j++) { int x=g[i][j]; dfs(x); if(min1>a[x][0]) min1=a[x][0]; if(max1<a[x][1]) max1=a[x][1]; k+=a[x][2]; } a[i][0]=min1,a[i][1]=max1,a[i][2]=k; } int main() { while(scanf("%d",&n)!=EOF) { for(int i=0;i<=n;i++) { a[i][0]=100000000; a[i][1]=-3; } for(int i=1;i<n;i++) { int x,y;scanf("%d%d",&x,&y); g[x].push_back(y); } for(int i=1;i<=n;i++) { dfs(i); } int ans=0; for(int i=1;i<=n;i++) { if(a[i][1]-a[i][0]+1==a[i][2]) ans++; } printf("%d\n",ans); } return 0; }