畅通工程再续
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 32209 Accepted Submission(s): 10564
Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
Sample Output
1414.2 oh!#include<iostream> #include<string.h> #include<algorithm> #include<cstdio> #include<cmath> int a[102][2],INF=1e9; bool b[102]; double d[102]; using namespace std; int main() { int T,C;scanf("%d",&T); while(T--) { memset(b,0,sizeof(b)); scanf("%d",&C); for(int i=0;i<=C;i++) d[i]=INF*1.00; d[1]=0; for(int i=1;i<=C;i++) { scanf("%d%d",&a[i][0],&a[i][1]); } double res=0; while(1) { int v=-1; for(int i=1;i<=C;i++) { if(!b[i]&&(v==-1||d[i]<d[v])) v=i; } if(v==-1)break; b[v]=1; res+=d[v]; for(int i=1;i<=C;i++) { double L1=sqrt((a[i][0]-a[v][0])*(a[i][0]-a[v][0])+(a[i][1]-a[v][1])*(a[i][1]-a[v][1])); if(L1>1000||L1<10) continue; d[i]=min(d[i],L1); } } for(int i=1;i<=C;i++) { if(d[i]==INF) { printf("oh!\n"); res=-1; break; } } if(res==-1) continue; res=res*100; printf("%.1lf\n",res); } return 0; }