大数据方案关键因素
编号 | 类别 | 问题 |
1 | 数据存储规模与数据类型 | 1-1:数据存储规模多大? 1-2:有哪些数据类型?不同类型的数据,需要何种技术进行处理? |
2 | 数据可获得性与质量 | 2-1:数据源是否可获得? 2-2:对获取困难的数据源,需要何种政策支持才能获得? 2-3:采用何种技术与手段评估数据源的质量? 2-4:如何形成反馈,使数据质量逐渐提高?需要何种政策支持? |
3 | 业务特征 | 3-1:系统是以实时处理为主,还是以批处理为主? 3-2:系统是存储密集型,还是计算密集型? |
4 | 经济可行性 | 4-1:系统建设的初期,需要构建哪些上层业务? 4-2:所构建的业务,是否满足闭环反馈的特点? 4-3:有没有明确的指标衡量业务的经济可行性或效益? |
5 | 运维管理要求 | 5-1:如何对海量设备进行安装,管理与维护? 5-2:如何快速扩容? 5-3:不同作业之间是否有资源隔离等要求? |
6 | 安全性要求 | 6-1:安全性工作的边界在何处?是全部的安全性在该大数据项目中考虑,还是安全性是一个独立的项目? 6-2:具体到该大数据项目,最主要的安全性要求是什么? |
7 | 部署要求 | 7-1:当前项目是需要构建在已有的硬件环境中,还是可以新建硬件环境? 7-2:是采用单集群部署,还是多集群部署? 7-3:对软件模块如何选择?例如,对于实时业务,是倾向于采用strom,还是倾向于采用spark streaming? 7-4:对容灾有何需求,多少预算? |
8 | 系统边界 | 8-1:系统交互界面如何定义? 8-2:系统交割界面如何定义? |
9 | 约束条件 | 9-1:项目团队的规模多大?团队的技能能处于何种水平? 9-2:项目投资规模是多大?可以使用的资源有何限制? 9-3:组织上的保障与支持力度有多大? 9-4:需求满足哪些强制标准与规范。 |