好久没出去旅游啦!森森决定去 Z 省旅游一下。
Z 省有 n 座城市(从 1 到 n 编号)以及 m 条连接两座城市的有向旅行线路(例如自驾、长途汽车、火车、飞机、轮船等),每次经过一条旅行线路时都需要支付该线路的费用(但这个收费标准可能不止一种,例如车票跟机票一般不是一个价格)。
Z 省为了鼓励大家在省内多逛逛,推出了旅游金计划:在 i 号城市可以用 1 元现金兑换 ai 元旅游金(只要现金足够,可以无限次兑换)。城市间的交通即可以使用现金支付路费,也可以用旅游金支付。具体来说,当通过第 j 条旅行线路时,可以用 cj 元现金或 dj 元旅游金支付路费。注意: 每次只能选择一种支付方式,不可同时使用现金和旅游金混合支付。但对于不同的线路,旅客可以自由选择不同的支付方式。
森森决定从 1 号城市出发,到 n 号城市去。他打算在出发前准备一些现金,并在途中的某个城市将剩余现金 全部 换成旅游金后继续旅游,直到到达 n 号城市为止。当然,他也可以选择在 1 号城市就兑换旅游金,或全部使用现金完成旅程。
Z 省政府会根据每个城市参与活动的情况调整汇率(即调整在某个城市 1 元现金能换多少旅游金)。现在你需要帮助森森计算一下,在每次调整之后最少需要携带多少现金才能完成他的旅程。
输入格式:
输入在第一行给出三个整数 n,m 与 q(1≤n≤105,1≤m≤2×105,1≤q≤105),依次表示城市的数量、旅行线路的数量以及汇率调整的次数。
接下来 m 行,每行给出四个整数 u,v,c 与 d(1≤u,v≤n,1≤c,d≤109),表示一条从 u 号城市通向 v 号城市的有向旅行线路。每次通过该线路需要支付 c 元现金或 d 元旅游金。数字间以空格分隔。输入保证从 1 号城市出发,一定可以通过若干条线路到达 n 号城市,但两城市间的旅行线路可能不止一条,对应不同的收费标准;也允许在城市内部游玩(即 u 和 v 相同)。
接下来的一行输入 n 个整数 a1,a2,⋯,an(1≤ai≤109),其中 ai 表示一开始在 i 号城市能用 1 元现金兑换 ai 个旅游金。数字间以空格分隔。
接下来 q 行描述汇率的调整。第 i 行输入两个整数 xi 与 ai′(1≤xi≤n,1≤ai′≤109),表示第 i 次汇率调整后,xi 号城市能用 1 元现金兑换 ai′ 个旅游金,而其它城市旅游金汇率不变。请注意:每次汇率调整都是在上一次汇率调整的基础上进行的。
输出格式:
对每一次汇率调整,在对应的一行中输出调整后森森至少需要准备多少现金,才能按他的计划从 1 号城市旅行到 n 号城市。
再次提醒:如果森森决定在途中的某个城市兑换旅游金,那么他必须将剩余现金全部、一次性兑换,剩下的旅途将完全使用旅游金支付。
输入样例:
6 11 3
1 2 3 5
1 3 8 4
2 4 4 6
3 1 8 6
1 3 10 8
2 3 2 8
3 4 5 3
3 5 10 7
3 3 2 3
4 6 10 12
5 6 10 6
3 4 5 2 5 100
1 2
2 1
1 17
输出样例:
8
8
1
样例解释:
对于第一次汇率调整,森森可以沿着 1→2→4→6 的线路旅行,并在 2 号城市兑换旅游金;
对于第二次汇率调整,森森可以沿着 1→2→3→4→6 的线路旅行,并在 3 号城市兑换旅游金;
对于第三次汇率调整,森森可以沿着 1→3→5→6 的线路旅行,并在 1 号城市兑换旅游金。
分析:本题存在不连通点,要特判。否则可能因为汇率大造成花钱少影响结果。
正向建图 1到i 反向建图n到i。dijkstra用优先队列和邻接表优化。
用map维护最小值。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int MAX=2e5+9;
map<ll,ll>res;
vector<pair<ll,ll>>cash[MAX/2];
vector<pair<ll,ll>>cre[MAX/2];
ll money[MAX/2];
ll h[MAX/2];
ll n,m,q;
ll vis[MAX/2];
ll dis[MAX/2];
ll diss[MAX/2];
struct node{
ll order;
ll d;
bool operator < (const node &b)const{//运算符重载,优先队列里放结构体要用到
return d>b.d;
}
};
void dijkstra1(){
priority_queue<node>q;
int i,j;
memset(dis,0x3f,sizeof(dis));
dis[1]=0;
q.push(node{1,0});
while(!q.empty()){
ll cur=q.top().order;
q.pop();
if(vis[cur]==1)continue; //不会重复入队
vis[cur]=1;
for(i=0;i<(int)cash[cur].size();i++){//不连通的话不会入队
if(dis[cash[cur][i].first]>dis[cur]+cash[cur][i].second){
dis[cash[cur][i].first]=dis[cur]+cash[cur][i].second;
q.push(node{cash[cur][i].first,dis[cash[cur][i].first]});
}
}
}
return ;
}
void dijkstra2(){
memset(vis,0,sizeof(vis));
priority_queue<node>q;
int i,j;
memset(diss,0x3f,sizeof(diss));
diss[n]=0;
q.push(node{n,0});
while(!q.empty()){
ll cur=q.top().order;
q.pop();
if(vis[cur]==1)continue;
vis[cur]=1;
for(i=0;i<(int)cre[cur].size();i++){
if(diss[cre[cur][i].first]>diss[cur]+cre[cur][i].second){
diss[cre[cur][i].first]=diss[cur]+cre[cur][i].second;
q.push(node{cre[cur][i].first,diss[cre[cur][i].first]});
}
}
}
return ;
}
void solve(){
int x;int y;
cin>>x>>y;
if(vis[x]==0){
res[money[x]]--;
if(res[money[x]]==0)res.erase(money[x]);
h[x]=y;
money[x]=dis[x]+(diss[x]+h[x]-1)/h[x];
res[money[x]]++;
}
cout<<res.begin()->first<<endl;
return ;
}
int main (){
cin>>n>>m>>q;
ll i,j;
for(i=1;i<=m;i++){
ll u,v,w1,w2;
cin>>u>>v>>w1>>w2;
cash[u].emplace_back(v,w1);
cre[v].emplace_back(u,w2);//反向建图
}
for(i=1;i<=n;i++){
cin>>h[i];
}
dijkstra1();
dijkstra2();
memset(vis,0,sizeof(vis));
for(i=1;i<=n;i++){ //不连通点特判
if(dis[i]==0x3f3f3f3f3f3f3f3f||diss[i]==0x3f3f3f3f3f3f3f3f){
vis[i]=1;
}else{
money[i]=dis[i]+(diss[i]+h[i]-1)/h[i];//向上取整的技巧
res[money[i]]++;
}
// cout<<money[i]<<" ";//6 8 8 13 17 17
}
while(q--){
solve();
}
return 0;
}