本题为LeetCode题库中第53题最大子序列求和,难度简单,题目请参考这里。
一道很简单的DP(Dynamic Programming)算法的题目,代码不难但思想需要考究如何找出动态规划中的转态方程,所以在这记录一下。
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例 2:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
解决思路:这种题目明显一看就是DP算法,但首先不考虑DP算法。显然,我们采用两层循环分别来定位买入和卖出的价格,当然第二层循环要从第一层循环i+1开始走,因为不能在买入股票前卖出股票,然后找出差值最大的数也就是最大利润了。代码很简单如下:(按照LeetCode上面的格式进行编写)