单源点最短路径

本文介绍了一个基于Dijkstra算法的实现案例,通过C语言演示了如何寻找加权图中两点之间的最短路径。该程序定义了一个权重矩阵来表示图,并通过Dijkstra算法计算从指定起点到其他各点的最短距离及路径。
摘要由CSDN通过智能技术生成
#include <stdio.h>


#define INF 10000
#define N 8


int adj_mtx[N][N];
int pre[N];
int visited[N];
int v;

void set(int i, int j, int dist)
{
  adj_mtx[i][j] = dist;
  adj_mtx[j][i] = dist;
}

void init()
{
  int i,j,k;
  for(i=0;i<N;i++)
    visited[i]=0;
  visited[v]=1;
  for(i=0;i<N;i++)
    for(j=0;j<N;j++)
      adj_mtx[i][j]=INF;
  set(v,v,0);
  set(0,1,8);
  set(0,2,3);
  set(0,3,2);
  set(1,4,3);
  set(2,5,4);
  set(3,6,5);
  set(4,5,1);
  set(5,6,2);
  set(4,7,1);
  set(5,7,3);
  set(6,7,4);

  for(i=0;i<N;i++)
    pre[i]=0;

  for(i=0;i<N;i++)
    {
      // if(i==v) continue;
      if(adj_mtx[v][i]!=INF) pre[i]=v;
     }
}

void dijikstra()
{
  int min_dist=INF,min_index=-1;
  int i,j,k;  
 for(i=0;i<N;i++)
   {
     min_dist=INF,min_index=-1;
    for(j=0;j<N;j++)
      if(!visited[j] && adj_mtx[v][j]<min_dist)
	{
	  min_dist=adj_mtx[v][j];
	  min_index=j;
	}
    if(min_index!=-1)
      {
	visited[min_index]=1;
	for(k=0;k<N;k++)
	  if(!visited[k] && adj_mtx[v][min_index]+adj_mtx[min_index][k]<adj_mtx[v][k])
	    {
	      adj_mtx[v][k]=adj_mtx[v][min_index]+adj_mtx[min_index][k];
	      pre[k]=min_index;
	    }
      }
   }
   
}

void output_path(int dest_node)
{
  //  printf("output_path destnode:%d\n"+dest_node);
  if(v==dest_node)
    { 
      printf("%d ",dest_node);
      return ;
     }
  output_path(pre[dest_node]);
  printf("%d ",dest_node);
}

void output_result()
{
  int i;
  for(i=0;i<N;i++)
      {
	printf("to node %d, min dist is:%d\n",i,adj_mtx[v][i]);
	printf("path is:\n");
	  output_path(i);
	printf("\n");
      }
}

void output()
{
  int i,j;
  printf("\npre:\n\n");
  for(i=0;i<N;i++)
    printf("%d ",pre[i]);
  printf("\n\nadj_mtx:\n\n");
  for(i=0;i<N;i++)
    {
    for(j=0;j<N;j++)
      printf("%-5d ",adj_mtx[i][j]);
    printf("\n");
    }
}

int main()
{
  v=0;
  
  init();
  dijikstra();
  output_result();
  //output();
 return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值