每日n刷:leetcode1725.可以形成最大正方形的矩形数目

这篇博客探讨了如何利用贪心算法有效地找出一组矩形中能够形成最大正方形的数量。首先,找到最大的正方形边长,然后遍历矩形数组,统计符合条件的矩形。优化后的贪心策略是,当遇到更长的边长时,更新最大边长并重置计数。此外,还提到了使用TreeMap进行排序的解决方案,以炫技方式实现相同目标。
摘要由CSDN通过智能技术生成

1725. 可以形成最大正方形的矩形数目

https://fishi.top/fishpic/f4522b0c-1e2d-462d-a116-9a46da7a631b.png

贪心

贪心

非常简单,先找到最大的正方形边长,再在数组中找到符合的长方形数量。

class Solution {
    public int countGoodRectangles(int[][] rectangles) {
        int ml = 0;
        for(int [] rectangle : rectangles) {
            ml = Math.max(ml, Math.min(rectangle[0], rectangle[1]));
        }
        int res = 0;
        for(int [] rectangle : rectangles) {
            if(rectangle[0] >= ml && rectangle[1] >= ml) res ++;
        }
        return res;
    }
}
#### 贪心优化

可以认作当前的长方形短边就是构成最大正方形的边长a,然后再往后遍历,如果有比a大的b,那么之前最大边长的矩形一定构成不了最大正方形,证明就是:a < b。直接遍历一遍即可。

class Solution {
    public int countGoodRectangles(int[][] rectangles) {
        int ml = 0, res = 0;
        for (int[] rectangle : rectangles) {
            int cur = Math.min(rectangle[0], rectangle[1]);
            if (cur == ml) res++;
            else if (cur > ml) {
                ml = cur;
                res = 1;
            }
        }
        return res;
    }
}
TreeMap排序

跟上面的逻辑一样,只是把非最大边长的其他正方形保存了下来,可以说是一种炫技手段。

class Solution {
    public int countGoodRectangles(int[][] rectangles) {
        TreeMap<Integer, Integer> treeMap = new TreeMap((a, b) -> (int)b - (int)a);
        for (int i = 0; i < rectangles.length; i++) {
            int min = Math.min(rectangles[i][0], rectangles[i][1]);
            treeMap.put(min, treeMap.getOrDefault(min, 0) + 1);
        }
        return treeMap.firstEntry().getValue();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

edanhuang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值