论文信息
- 标题: DSCA: A Digital Subtraction Angiography Sequence Dataset and Spatio-Temporal Model for Cerebral Artery Segmentation
- 期刊: IEEE Transactions on Medical Imaging, 2025
- 作者: Jiong Zhang等
- 机构: 中科院宁波材料所、浙工大等
创新点
- 首个公开DSA脑动脉分割数据集:
- DSCA数据集:含224条DSA序列(1792帧),标注主脉(MAT)与分支(BV),覆盖多种疾病(狭窄、烟雾病)。
- 多厂商支持:包含Siemens、Philips等设备数据,分辨率多样。
- 时空模型DSANet:
- 双编码分支:时空编码分支(TEB)+ 空间编码分支(SEB),联合处理DSA序列与MinIP图像。
- TemporalFormer模块:以帧为token建模全局时序上下文,提升小血管连通性。
摘要
DSA动态序列能清晰显示脑血管血流,但单帧分割易受低对比度血管和颅骨残留干扰。本文构建DSCA数据集,并提出DSANet模型:通过TEB捕捉多帧动态信息,SEB提取MinIP图像的空间特征,结合TemporalFormer与STF模块融合时空特征。实验表明,DSANet Dice达0.9033,优于20+基线模型,显著抑制误分割。
研究意义
- 填补数据集空白:首个公开的DSA序列数据集,助力算法开发与临床研究。
- 临床辅助:通过主脉/分支分类支持狭窄检测、手术导航等应用。
- 方法普适性:模型适配2D/3D输入,适用于多种血管病变分析。
提出的方法
-
DSANet架构
- 时空编码分支(TEB):处理原始DSA序列,学习动态血流特征。
- 空间编码分支(SEB):输入MinIP图像,提取全局血管结构。
- TemporalFormer:将帧特征视为token,通过多头注意力建模时序相关性。
- STF模块:通过Max-Avg池化与通道注意力融合时空特征,抑制颅骨干扰。
-
损失函数
- 联合损失:交叉熵损失(CE Loss)+ Dice Loss,结合深度监督机制优化多尺度输出。
-
实验结果
- 性能对比:在DSCA和DIAS数据集上,Dice分别达0.9033和0.7837,显著领先UNet、TransUNet等。
- 鲁棒性:输入扰动实验中,噪声强度0.2时仍保持Dice 84%,优于基线模型。