论文速看[2019-1-10] Low-Cost Transfer Learning of Face Tasks

一篇关于人脸识别迁移学习的文章
IIT出品,文章地址:Arxiv
摘要

Do we know what the different filters of a face network represent? Can we use this filter information to train other tasks without transfer learning? For instance, can age, head pose, emotion and other face related tasks be learned from face recognition network without transfer learning? Understanding the role of these filters allows us to transfer knowledge across tasks and take advantage of large data sets in related tasks. Given a pre-trained network, we can infer which tasks the network generalizes for and the best way to transfer the information to a new task.
We demonstrate a computationally inexpensive algorithm to reuse the filters of a face network for a task it was not trained for. Our analysis proves these attributes can be extracted with an accuracy comparable to what is obtained with transfer learning, but 10 times faster. We show that the information about other tasks is present in relatively small number of filters. We use these insights to do task specific pruning of a pretrained network. Our method gives significant compression ratios with reduction in size of 95% and computational reduction of 60%

作者做了一个非常有意思的研究,对CNN最后一层的各个filter所表示的特征进行了分类研究,想要挖掘filter表现特征的物理意义。以VGGFace为例,对最后一层的512个filter所表示的特征进行分类研究
fig-1
结果如上图所示,其中和age、Head pose、Eyeglass、Facial Hair有关的filter数量如图所示,并且有一些filter是共用的。
那么在从vggface迁移到age predict任务的时候,只要用到114个和age相关的filer就能取得效果,减少了网络复杂度和参数量。

main contribution

  1. We introduce a simple method to analyze the internal representation of a pretrained face network and how information about other related tasks it was not trained for, is encoded in this network.
  2. We present a computationally inexpensive method to transfer the information to other tasks without explicit transfer learning.
  3. We show that information about other tasks is concentrated in very few filters. This knowledge can be leveraged to achieve cross-task pruning of pre-trained networks, which provides significant reduction of space and computational complexity.

文章结构分类两部分,先研究不同task之间是否存在联系;然后研究如何获取这种联系。

Learning Relationships between Face Tasks

先证明了从一个task迁移到另一个task是可行的

We hypothesize that, unlike contemporary transfer learning methodologies (that finetune the weights or input these activation maps through further layers of a different network), a simple linear regression model is sufficient to obtain the predicted label of the satellite task, f t f_t ft.
作者任务,和传统的迁移学习需要改变layer里的权重不同,face task之间的迁移只要简单的线性回归就能完成。

本文提出的linear regression的方法和传统的用迁移学习方法对比,识别精度差不多,但是计算快了78倍。
fig-2

Pruning across Face Tasks

Our pruning algorithm has two steps:

  1. Remove top layers of the network which give less performance
  2. For each layer, retain only filters that have information about task T.

本文选择了一种feature selection方法:LASSO,a L1-regularized regression method来确定每个layer里有效的filters数量。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
Abstract: Gas metal arc welding (GMAW) is a widely used welding process in various industries. One of the significant challenges in GMAW is to achieve optimal welding parameters and minimize defects such as spatter and porosity. In this paper, we propose a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Our approach can automatically detect and classify the different types of metal-transfer modes and provide insights for process optimization. Introduction: Gas metal arc welding (GMAW) is a welding process that uses a consumable electrode and an external shielding gas to protect the weld pool from atmospheric contamination. During the GMAW process, the metal transfer mode affects the weld quality and productivity. Three types of metal transfer modes are commonly observed in GMAW: short-circuiting transfer (SCT), globular transfer (GT), and spray transfer (ST). The selection of the transfer mode depends on the welding parameters, such as the welding current, voltage, and wire feed speed. The metal transfer mode can be observed using high-speed imaging techniques, which capture the dynamic behavior of the molten metal during welding. The interpretation of these images requires expertise and is time-consuming. To address these issues, we propose a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Methodology: We collected a dataset of metal-transfer images using a high-speed camera during the GMAW process. The images were captured at a rate of 5000 frames per second, and the dataset includes 1000 images for each transfer mode. We split the dataset into training, validation, and testing sets, with a ratio of 70:15:15. We trained a convolutional neural network (CNN) to classify the metal-transfer mode from the images. We used the ResNet50 architecture with transfer learning, which is a widely used and effective approach for image classification tasks. The model was trained using the categorical cross-entropy loss function and the Adam optimizer. Results: We achieved an accuracy of 96.7% on the testing set using our deep-learning-based approach. Our approach can accurately detect and classify the different types of metal-transfer modes in GMAW processes. Furthermore, we used the Grad-CAM technique to visualize the important regions of the images that contributed to the classification decision. Conclusion: In this paper, we proposed a deep-learning-based approach to analyze metal-transfer images in GMAW processes. Our approach can automatically detect and classify the different types of metal-transfer modes with high accuracy. The proposed approach can provide insights for process optimization and reduce the need for human expertise in interpreting high-speed images. Future work includes investigating the use of our approach in real-time monitoring of the GMAW process and exploring the application of our approach in other welding processes.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值