7、损失函数:从原理到应用

损失函数:从原理到应用

在机器学习中,模型的训练目标是找到一组参数,使得模型能够在给定的任务中实现从输入到输出的最佳映射。而损失函数(Loss function)或成本函数(Cost function)在这个过程中起着关键作用,它用于衡量模型预测值与真实值之间的不匹配程度。

1. 最大似然估计

最大似然估计是构建损失函数的一种重要方法。传统上,我们认为模型直接计算预测值 $y$,但现在我们将视角转变,把模型看作是计算给定输入 $x$ 下,可能输出 $y$ 的条件概率分布 $Pr(y|x)$。损失函数的目标是让每个训练输出 $y_i$ 在根据相应输入 $x_i$ 计算出的分布 $Pr(y_i|x_i)$ 下具有高概率。

1.1 计算输出的分布

要让模型 $f[x, \phi]$ 计算概率分布,我们首先要选择一个定义在输出域 $y$ 上的参数化分布 $Pr(y|\theta)$,然后使用网络计算该分布的一个或多个参数 $\theta$。

例如,当预测域是实数集 $y \in R$ 时,我们可以选择单变量正态分布,其由均值 $\mu$ 和方差 $\sigma^2$ 定义,即 $\theta = {\mu, \sigma^2}$。机器学习模型可以预测均值 $\mu$,而方差 $\sigma^2$ 可以视为未知常数。

1.2 最大似然准则

对于每个训练输入 $x_i$,模型计算不同的分布参数 $\theta_i = f[x_i, \phi]$。每个观察到的训练输出 $y_i$ 应该在其相应的分布 $Pr(y_i|\theta_i)$ 下具有高概率。因此,我们选择模型参数 $\phi$,使得所有 $I$

内容概要:本文介绍了利用Matlab代码实现处理IMU、GPS传感器数据的多种姿态解算算法,重点包括卡尔曼滤波和扩展卡尔曼滤波等技术,旨在提升导航系统的精度与稳定性。通过对传感器数据进行融合与滤波处理,有效解决了惯性导航系统中存在的累积误差问题,提高了动态环境下的姿态估计准确性。文章还提供了完整的算法实现流程和仿真验证,展示了不同滤波方法在实际应用场景中的性能对比。; 适合人群:具备一定Matlab编程基础,从事导航、控制、机器人或自动驾驶等相关领域研究的科研人员及工程技术人员,尤其适合研究生及以上学历或有相关项目经验的研发人员。; 使用场景及目标:①应用于无人机、无人车、机器人等自主导航系统中的姿态估计;②用于教学与科研中对滤波算法的理解与改进;③帮助开发者掌握IMU【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度和稳定性(Matlab代码实现)/GPS融合算法的设计思路与实现技巧,提升系统鲁棒性与定位精度。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,逐步调试并理解各算法模块的作用,重点关注传感器数据预处理、状态方程构建、噪声协方差调节及滤波结果分析等关键环节,以达到深入掌握姿态解算核心技术的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值