Description
现给定n个闭区间[ai, bi],1<=i<=n。这些区间的并可以表示为一些不相交的闭区间的并。你的任务就是在这些表示方式中找出包含最少区间的方案。你的输出应该按照区间的升序排列。这里如果说两个区间[a, b]和[c, d]是按照升序排列的,那么我们有a<=b< c<=d。
请写一个程序:
读入这些区间;
计算满足给定条件的不相交闭区间;
把这些区间按照升序输出。
Input
第一行包含一个整数n,3<=n<=50000,为区间的数目。以下n行为对区间的描述,第i行为对第i个区间的描述,为两个整数1<=ai< bi<=1000000,表示一个区间[ai, bi]。
Output
输出计算出来的不相交的区间。每一行都是对一个区间的描述,包括两个用空格分开的整数,为区间的上下界。你应该把区间按照升序排序。
Sample Input
5
5 6
1 4
10 10
6 9
8 10
Sample Output
1 4
5 10
题解
题意就是线段树的感觉,但是可以贪心(这能叫贪心吧)水过。
按左端点从小到大sort,维护右端点,如果断茬儿了 输出 更新L
看代码吧2333
1 #include<cmath> 2 #include<cstdio> 3 #include<iostream> 4 #include<algorithm> 5 using namespace std; 6 struct emm{ 7 int l,r; 8 }a[50007]; 9 bool cmp(emm qaq,emm qwq) 10 { 11 if(qaq.l==qwq.l)return qaq.r<qwq.r; 12 return qaq.l<qwq.l; 13 } 14 int main() 15 { 16 int n; 17 scanf("%d",&n); 18 for(int i=1;i<=n;++i) 19 scanf("%d%d",&a[i].l,&a[i].r); 20 sort(a+1,a+n+1,cmp); 21 int l=a[1].l,r=a[1].r; 22 for(int i=2;i<=n;++i) 23 { 24 if(a[i].l<=r)r=max(r,a[i].r); 25 else{ 26 cout<<l<<" "<<r<<endl; 27 l=a[i].l,r=a[i].r; 28 } 29 } 30 if(l){cout<<l<<" "<<r<<endl;} 31 return 0; 32 }