传送门:https://www.luogu.org/problemnew/show/P2434
题目描述
现给定n个闭区间[ai, bi],1<=i<=n。这些区间的并可以表示为一些不相交的闭区间的并。你的任务就是在这些表示方式中找出包含最少区间的方案。你的输出应该按照区间的升序排列。这里如果说两个区间[a, b]和[c, d]是按照升序排列的,那么我们有a<=b<c<=d。
请写一个程序:
读入这些区间;
计算满足给定条件的不相交闭区间;
把这些区间按照升序输出。
输入输出格式
输入格式:
第一行包含一个整数n,3<=n<=50000,为区间的数目。以下n行为对区间的描述,第i行为对第i个区间的描述,为两个整数1<=ai<bi<=1000000,表示一个区间[ai, bi]。
输出格式:
输出计算出来的不相交的区间。每一行都是对一个区间的描述,包括两个用空格分开的整数,为区间的上下界。你应该把区间按照升序排序。
输入输出样例
输入样例#1: 复制
5 5 6 1 4 10 10 6 9 8 10
输出样例#1: 复制
1 4 5 10
蒟蒻表示刚开始看到这题,连线段树的想法都出来了。。
仔细想想,不对,这就是一道很简单的贪心啊!
把区间左端点从小到大排一遍序,依次合并即可;合并的时候记录当前右端点,判断下一个区间左端点是否在区间内,即是否<当前右端点,若在则合并,否则分开。
(这里已经说得很直白了,建议自己思考或者先写再看下面内容)
例如对于样例,排序后:
1 4
5 6
6 9
8 10
10 10
首先区间为[1,4],右端点为4;
之后下个区间左端点5>4,不在当前区间内,则分开为[1,4],[5,6],当前右端点为6;
之后下个区间左端点6<=6,在当前区间内,合并,发现右端点9>6,需更新,则两段区间为[1,4],[5,9],右端点为9;
之后下个区间左端点8<=9,在当前区间内,合并,发现右端点10>9,需更新,则两段区间为[1,4],[5,10],右端点为10;
后面一个区间就不用说了吧。
代码真的很短,很简单(其实思路也不难),不要想得太复杂了。
代码:
#include<cstdio>
#include<algorithm>
using namespace std;
struct qhy
{
int l,r;
};
int n,r;
qhy segment[50001];
bool cmp(qhy i,qhy j)
{
return i.l<j.l;
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%d%d",&segment[i].l,&segment[i].r);
sort(segment+1,segment+n+1,cmp); //左端点排序
int last=1;
printf("%d",segment[1].l);
for (int i=2;i<=n;i++)
if (segment[i].l>segment[last].r) //判断下个区间左端点是否在当前区间内
{
printf(" %d\n",segment[last].r);
printf("%d",segment[i].l);
last=i;
} else if (segment[last].r<segment[i].r) last=i; //更新右端点
printf(" %d",segment[last].r);
}