alice7model
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
55、基于高斯拉普拉斯和深度学习的肺结节检测方法
本文提出了一种基于高斯拉普拉斯和深度学习的肺结节检测方法,结合多尺度LoG滤波器与卷积神经网络(CNN)模型,在LUNA16数据集上实现了高效准确的检测。该方法通过肺分割、结节检测和结节分类三个主要步骤,取得了93.2%的验证准确率、89.3%的精度、71.2%的召回率、98.2%的特异性和0.97的AUC。研究还分析了方法的优势、与其他模型的对比以及在实际应用中的潜力与挑战,为肺结节检测提供了可靠的解决方案。原创 2025-07-25 04:32:50 · 73 阅读 · 0 评论 -
54、指纹活体检测与肺部结节检测技术解析
本文深入解析了指纹活体检测与肺部结节检测技术的核心原理与应用。针对指纹识别技术,探讨了其优势、伪造攻击类型及应对策略,并介绍了基于GAN和MobileNets的检测方法。对于肺部结节检测,分析了其重要性、相关深度学习模型及实验结果,展示了结合多尺度滤波器和CNN的CAD系统表现。最后,文章对两项技术进行了对比,并展望了其未来发展方向,旨在推动生物识别与医学图像分析领域的进一步创新。原创 2025-07-24 16:48:33 · 65 阅读 · 0 评论 -
53、新冠疫情与指纹识别安全的数据分析与技术应用
本文探讨了新冠疫情数据分析和指纹识别安全技术两个主题。在新冠疫情数据分析中,通过回归分析研究了糖尿病患病率和吸烟习惯对总死亡人数的影响,揭示了高风险人群需要更多关注。在指纹识别安全技术方面,采用了DCGANs和MobileNets等深度学习模型来提高指纹检测系统的准确性和安全性,有效应对未知欺骗材料的威胁。文章还分析了相关技术的优势、挑战及未来发展方向,为疫情防控和身份认证安全提供了科学依据和技术支持。原创 2025-07-23 16:54:47 · 57 阅读 · 0 评论 -
52、实时交通管理的动态模型与算法
本文探讨了实时交通管理的动态模型与算法,旨在解决交通拥堵问题,减少车辆等待时间和总行驶时间。文章介绍了多种技术方法,包括射频识别(RFID)、深度学习与计算机视觉、拥堵传播建模算法(CPMA)以及人工神经网络(ANN),并提出了一种基于周期时间调整的新算法。通过实验数据分析,该算法在印度两个主要城市的交通管理中显著提高了通行效率。未来的工作将扩展至更多信号灯场景,进一步提升系统智能化水平。原创 2025-07-22 09:28:49 · 56 阅读 · 0 评论 -
51、皮肤癌检测与泰卢固语文本摘要提取的智能算法研究
本文探讨了两种应用于不同领域的智能算法研究。第一部分介绍了一种基于PNN深度学习的皮肤癌检测框架,通过高斯滤波预处理、k-means分割ROI、GLCM与DWT特征提取以及PNN分类等步骤,实现了对皮肤癌的高效识别,并展示了其优于传统SVM方法的性能。第二部分则聚焦于泰卢固语文本摘要提取,提出采用粒子群优化(PSO)算法,结合信息得分与语义得分的计算,有效提升了摘要生成的质量。实验结果显示,该PSO方法在ROUGE指标上优于HS和GA技术。文章还对两种技术的核心流程、优势、可扩展性及应用挑战进行了深入分析,原创 2025-07-21 16:03:48 · 59 阅读 · 0 评论 -
50、高效切换呼叫准入控制与皮肤癌检测的AI框架
本文介绍了两个不同领域的研究成果:高效切换呼叫准入控制方案和皮肤癌检测的人工智能框架。在呼叫准入控制方面,提出的带宽等级降级算法(BLD)通过降低正在进行的呼叫带宽来释放资源,满足新呼叫需求,有效降低掉话和阻塞概率,并提高资源利用率。在皮肤癌检测方面,提出了一种基于深度学习的概率神经网络(PNN)分类机制,结合离散小波变换(DWT)、灰度共生矩阵(GLCM)和k-均值聚类方法,实现对皮肤病变的准确检测和分类。实验结果表明,这两种方法在各自领域均展现出良好的性能和应用前景。原创 2025-07-20 16:32:05 · 51 阅读 · 0 评论 -
49、情感分析与高效切换CAC方案解析
本文探讨了情感分析和高效切换呼叫准入控制(CAC)方案的相关方法与应用。在情感分析部分,比较了翻译方法、印地语语料库方法、LDA方法和CNN方法的分类效果,其中印地语语料库方法和CNN方法表现较好。在高效切换CAC方案部分,分析了现有切换方案的不足,并提出了动态保护信道分配和带宽降级技术相结合的新方案,以提高服务质量、最大化信道利用率并减少呼叫阻塞率。研究还涵盖了流量分类、用户调度策略及基于优先级的队列机制,旨在为无线蜂窝网络中的切换呼叫和新呼叫提供资源高效的解决方案。原创 2025-07-19 11:47:15 · 55 阅读 · 0 评论 -
48、物联网与印地语情感分析技术研究
本博文探讨了物联网对等网络扩展方案与印地语情感分析技术的研究进展与挑战。在物联网部分,分析了不同节点数量对维护成本和数据速率的影响,提出了一种成本效益高的部署设计,同时指出了能量收集模块测试和自动化管理的未来方向。在情感分析部分,介绍了翻译法、印地语语料库法、线性判别分析法和CNN法四种方法,并对其流程、优势与不足进行了比较。最后,博文总结了两个技术领域的关联、应用场景以及未来发展方向。原创 2025-07-18 13:16:00 · 48 阅读 · 0 评论 -
47、云计算任务调度与物联网无线组网的创新探索
本文探讨了云计算任务调度和物联网无线组网的创新方法。在云计算领域,研究基于PSO算法的任务调度策略,展示了其在执行时间和资源利用率方面的显著优势,并通过CloudSim实验环境验证了性能优化效果。在物联网方面,提出了一种基于对等网络的无线组网扩展架构,通过去中心化设计和自供电节点方案,有效降低了部署成本并扩展了网络覆盖范围。文章还分析了两种技术的挑战与改进方向,并展望了未来跨领域融合的可能性。原创 2025-07-17 09:20:54 · 70 阅读 · 0 评论 -
46、智能农业与云计算任务调度的创新探索
本文探讨了智能农业与云计算任务调度的创新应用。在智能农业领域,介绍了AI传感器、农业机器人设计及多种传感器模型在土壤和作物监测中的作用,并详细描述了ARM Cortex-M处理器在数据处理与云端通信中的应用;在云计算任务调度领域,分析了资源分配的挑战,并提出基于粒子群优化(PSO)算法的解决方案,通过模拟测试验证了其在任务执行时间和完成时间上的优势。最后,文章展望了智能农业与云计算结合带来的高效农业生产新模式。原创 2025-07-16 15:44:49 · 46 阅读 · 0 评论 -
45、牙科与农业的科技突破:数字化与智能化的新时代
本文探讨了牙科和农业领域在数字化与智能化技术推动下的科技突破。牙科领域通过CAD/CAM系统、3D成像、数字比色和引导手术等技术,显著提高了诊断准确性、治疗效率和修复体质量,同时减少了患者的就诊次数。农业领域则借助传感器、农业机器人和机器学习,实现了生产过程的自动化和精准化,提高了资源利用率和产量预测准确性。文章分析了这两个领域的发展趋势和面临的挑战,并展望了未来人工智能、大数据和跨学科合作带来的广阔前景。原创 2025-07-15 12:10:14 · 77 阅读 · 0 评论 -
44、云计算任务调度与牙科数字化技术的创新发展
本文探讨了改进蚁群算法在云计算任务调度中的应用及其提升负载均衡性的实验结果,同时分析了牙科领域数字化技术的创新发展与挑战。改进蚁群算法通过引入信息素调整因子 δ,有效优化了任务调度效率和资源负载分配。牙科数字化则通过3D成像、口腔内扫描、数字印模和CAD/CAM等技术,显著提升了治疗质量与患者体验,但也面临技术普及、伦理及法律等方面的挑战。文章进一步指出了云计算任务调度与牙科数字化在数据处理与算法优化方面的技术关联,并展望了两者未来的发展方向。原创 2025-07-14 11:01:15 · 86 阅读 · 0 评论 -
43、语音数据集与云任务调度算法研究
本文研究了Speech@SCIS语音数据集及其在性别分类任务中的应用,展示了其相对于基线数据集的性能优势,并提出了未来改进方向。同时,针对云环境下任务调度的问题,提出了一种改进的蚁群算法,兼顾了算法收敛速度和虚拟机负载平衡,为电力云计算优化提供了技术支持。研究具有重要的理论和实践意义,为未来语音研究和云计算任务调度提供了新的思路。原创 2025-07-13 14:55:32 · 77 阅读 · 0 评论 -
42、Speech@SCIS:用于印度人群语音 - 面部跨模态研究的标注视频数据集
本文介绍了Speech@SCIS,这是一个针对印度族群的语音-面部跨模态研究的标注视频数据集。该数据集通过一个基于Web的应用程序收集,并经过性别和年龄标注,用于探索语音和面部之间的关系。文章详细描述了数据集的收集工具、语音特征分析以及与现有基准数据集在性别分类任务上的性能比较,结果表明Speech@SCIS在多个指标上表现更优。该数据集为语音生物识别、安全认证和法医调查等领域的研究提供了重要资源。原创 2025-07-12 14:41:53 · 99 阅读 · 0 评论 -
41、推荐系统与工业物联网:上下文依赖与新型调度算法
本文探讨了推荐系统中的上下文依赖处理方法,以及工业物联网(IIoT)中新型调度算法CatchPro的设计与应用。通过结合上下文信息和用户操作标签,推荐系统能够提升推荐质量;而在IIoT领域,CatchPro算法基于请求优先级调度,有效降低了处理延迟,提高了服务质量(QoS)。研究展示了这两个领域在提升效率和智能化方面的巨大潜力。原创 2025-07-11 15:52:38 · 50 阅读 · 0 评论 -
40、网络路由与推荐系统的技术探索
本博文探讨了移动自组网(MANET)中DYMO路由协议的性能优化方法以及推荐系统中基于用户标签行为的上下文依赖分析。通过结合机器学习技术,DYMO协议在不同网络环境下的性能得到了提升,而推荐系统研究则聚焦于如何利用上下文和用户隐式反馈来改进推荐效果。文章还对两种技术进行了对比分析,并探讨了其综合应用的可能性及未来发展方向。原创 2025-07-10 14:33:18 · 63 阅读 · 0 评论 -
39、移动云与MANET路由协议的优化研究
本文探讨了移动云与MANET路由协议的优化方法。在移动云部分,结合MBFD算法和支持向量机(SVM),优化虚拟机调度,降低了迁移次数、能源消耗和SLA违反率。在MANET部分,通过机器学习技术改进DYMO路由协议的RRWT参数,提升了QoS性能。研究展示了人工智能在移动云调度和路由协议中的重要作用,并展望了未来发展趋势,如人工智能的深度融合和绿色节能技术的应用。原创 2025-07-09 11:24:45 · 91 阅读 · 0 评论 -
38、助力视障人士与优化移动云调度的创新方案
本文介绍了两项创新技术方案:一是基于计算机视觉和OCR技术的视障人士语音导师系统,通过树莓派和相机实现图像捕获、文本提取及语音转换,为视障人士提供便捷的文本阅读辅助;二是移动云环境下的扩展调度方案,结合MBFD算法、SVM技术和DVFS算法,优化虚拟机资源分配与迁移,降低能耗并减少SLA违规。文章详细阐述了系统架构、工作流程、实现方法及未来优化方向,展现了技术在实际应用中的潜力与价值。原创 2025-07-08 12:53:18 · 42 阅读 · 0 评论 -
37、利用新冠疫情推特数据进行情感分析及视障语音助手研究
本博客围绕两个研究主题展开:一是利用新冠疫情推特数据进行情感分析,通过数据提取、预处理和情感确定三个阶段,使用TextBlob和朴素贝叶斯分类器分析员工对在家工作政策的态度;二是视障语音助手的研究,介绍了一种基于OCR技术和Raspberry Pi的设备,旨在帮助视障者将图像文本转换为语音,提升其信息获取能力。博客还探讨了两个研究领域的潜在结合点,展望了情感分析在辅助技术中的应用前景。原创 2025-07-07 14:48:31 · 49 阅读 · 0 评论 -
36、医疗与社交数据的智能分析:心脏病预测与疫情情绪洞察
本文探讨了数据驱动的智能分析在医疗和社会领域的重要应用。首先,介绍了基于卷积神经网络(CNN)和Adam优化器的心脏病预测模型,该模型通过对ECG图像数据的分析,提高了预测的准确性,为早期诊断提供了有力支持。其次,基于Twitter数据,利用朴素贝叶斯分类器对疫情期间公众对远程工作的情绪进行了分析,帮助企业和政府更好地了解公众需求。研究还讨论了这两项技术的应用前景和社会影响,未来随着人工智能技术的进步,它们将在更多领域发挥更大的作用。原创 2025-07-06 10:16:54 · 46 阅读 · 0 评论 -
35、手写字符识别与害虫检测的人工智能应用
本文探讨了人工智能在手写梵文短尺度字符识别与椰子种植园中螺旋粉虱害虫检测中的应用。在梵文字符识别方面,模型取得了较高的训练和测试准确率,但仍存在对元音和单词识别的局限;而在螺旋粉虱检测方面,通过多项逻辑回归、随机森林分类器和神经网络的应用,随机森林模型表现出最佳性能,为害虫的实时监测和管理提供了有效支持。文章总结了研究成果,并展望了未来在数据集扩展、模型优化及应用范围拓展方面的研究方向,强调了这两项研究在科研与实际应用中的重要价值。原创 2025-07-05 15:13:35 · 38 阅读 · 0 评论 -
34、软件工作量估计与手写字符识别技术研究
本文探讨了两种基于神经网络的技术:基于A-CNN算法的软件工作量估计方法和手写梵文脚本字符识别技术。前者通过A-CNN算法在准确性、执行时间和预测误差等指标上优于现有方法,为软件项目管理提供更可靠的估算方式;后者通过数据预处理、特征提取和分类步骤,实现对手写梵文字符的识别,尽管在处理复杂情况时仍有挑战。研究还分析了两种技术的相似性、优势及未来发展方向。原创 2025-07-04 13:54:12 · 49 阅读 · 0 评论 -
33、天文物体分类与软件项目工作量估算的创新方法
本文介绍了两种创新的研究成果:利用KNN算法进行天文物体分类,以及基于ANOVA卷积神经网络(A-CNN)的高效类比式软件工作量估算方法。天文物体分类通过KNN算法结合其他技术对行星和天体进行分类,而软件工作量估算则通过数据预处理、特征选择、权重计算、相似度评估和A-CNN模型提高估算的准确性与效率。两种方法在各自领域均展现了良好的性能,并为未来研究提供了跨领域的启发与借鉴。原创 2025-07-03 14:21:58 · 60 阅读 · 0 评论 -
32、风力预测与天文物体分类:机器学习的双重应用
本博客探讨了机器学习在两个不同领域的应用:风力预测和天文物体分类。在风力预测部分,比较了随机森林回归、ARIMA和LSTM等算法,发现LSTM在多个数据集上表现最佳。在天文物体分类中,通过对多种算法(如SVM、KNN、神经网络等)的比较,选择了KNN作为最优分类器,并达到了96.5%的准确率。研究展示了机器学习在可再生能源和天文领域中的强大潜力和实际应用价值。原创 2025-07-02 11:01:16 · 48 阅读 · 0 评论 -
31、广告点击欺诈检测与风电预测技术解析
本博客详细解析了广告点击欺诈检测和风电预测两个领域的技术和方法。在广告点击欺诈检测部分,比较了高斯朴素贝叶斯分类器和逻辑回归算法的性能,通过准确率、召回率、精确率和F1分数等指标得出逻辑回归更优。在风电预测部分,分析了随机森林回归、ARIMA模型和LSTM算法的表现,使用均方根误差(RSME)作为评估指标,并探讨了各自的最佳应用场景。博客还对两个领域的算法选择、数据集特点及未来发展趋势进行了综合对比与总结,并提供了具体的操作步骤和流程示意图,帮助读者更好地理解和应用相关技术。原创 2025-07-01 15:46:20 · 62 阅读 · 0 评论 -
30、肺部结节检测与广告点击欺诈检测的机器学习应用
本文探讨了机器学习在肺部结节检测和广告点击欺诈检测两个领域的重要应用。在肺部结节检测中,GK-KMA和PTRNN算法展现出卓越的性能,提高了肺部区域分割和结节检测的准确性;在广告点击欺诈检测中,逻辑回归和高斯朴素贝叶斯算法能够高效识别虚假点击,维护广告市场的公平性。文章还分析了技术优势、潜在挑战与解决方案,并展望了未来发展趋势,展示了机器学习在医疗诊断和网络安全领域的广阔前景。原创 2025-06-30 11:31:46 · 60 阅读 · 0 评论 -
29、基于GK - KMA的CT图像分割与PTRNN肺结节检测方法
本文提出了一种基于GK-KMA图像分割和PTRNN分类的深度学习方法,用于CT图像中的肺结节检测。通过预处理、肺分割、结节候选检测、深度特征提取和分类五个主要步骤,结合中值滤波器、自适应直方图均衡化、形态学操作及ResNet 152网络,提高了肺结节检测的准确性与效率。PTRNN通过CMWOA优化权重和偏置参数,克服了传统RNN的局限性,为肺癌早期诊断提供了有效支持。原创 2025-06-29 16:47:20 · 56 阅读 · 0 评论 -
28、温度预测与音乐推荐系统:两种创新方法的解析
本文介绍了两种创新方法在不同科技领域的应用:混合MLP-GOA算法用于提高温度预测的准确性,以及自适应聚类方法解决音乐推荐系统的长尾问题。MLP-GOA算法通过优化MLP的计算权重和偏差,在多个评估指标上显著优于传统MLP模型,并通过可视化分析验证了其预测准确性。自适应聚类方法通过识别长尾歌曲并进行K-means聚类,有效提升了尾部歌曲的推荐精度,克服了协同过滤的流行度偏差。两种方法均基于真实数据,展现出良好的性能和应用潜力,未来可进一步探索多算法融合、实时性优化和跨领域应用。原创 2025-06-28 11:58:42 · 49 阅读 · 0 评论 -
27、基于混合算法的气象预测:MLP - GWO与MLP - GOA的应用
本文探讨了基于混合算法的气象预测方法,重点介绍了MLP-GWO和MLP-GOA两种模型在降雨量和温度预测中的应用。通过在印度特定地区的实证研究,结果表明混合算法显著优于传统MLP模型,在预测准确性和稳定性方面表现出色。研究为气象预测提供了新的技术手段,也为未来相关领域的优化算法应用提供了参考。原创 2025-06-27 14:00:45 · 67 阅读 · 0 评论 -
26、Telugu文本分类与混合MLP - GWO在降雨预测中的应用
本博客探讨了两个研究主题:一是基于多种机器学习算法和特征提取技术的Telugu文本分类方法,包括一元语法、二元语法以及向量化方法的应用,并通过实验对比了不同算法的分类性能;二是结合灰狼优化(GWO)算法与多层感知器(MLP)的混合模型在月降雨量预测中的应用,研究展示了GWO在提升降雨预测准确性方面的有效性。研究结果表明,Telugu文本分类中一元语法结合朴素贝叶斯或SVM可实现高准确率,而混合MLP-GWO模型在降雨预测中也表现出优越的性能。原创 2025-06-26 09:49:35 · 64 阅读 · 0 评论 -
25、生物与教育领域的智能技术应用
本文探讨了智能技术在生物医学和教育领域的应用。在自闭症研究中,通过特征选择和机器学习模型识别了与疾病高度相关的基因,其中CAPS2和ANKUB1构建的模型准确率达到95%。同时,研究提出了一种基于AI的考场冒名顶替检测系统,利用MobileNet_V2和CNN技术实现高精度人脸识别,有效提升考试公平性。此外,研究还涉及泰卢固语文本分类,采用多种机器学习算法和特征提取方法对泰卢固语文本进行高效分类,准确率高达99%。文章进一步展望了模型优化、数据融合和自动化智能化的发展趋势,并提出了跨领域技术融合的未来方向。原创 2025-06-25 14:05:25 · 49 阅读 · 0 评论 -
24、烹饪AI文本到教学可视化及自闭症致病基因识别研究
本文介绍了人工智能在两个不同领域的研究成果:一是利用定制BERT模型实现烹饪AI文本到教学可视化的转换,通过特征提取、聚类和标点恢复等步骤,帮助更直观地展示烹饪过程;二是基于多层感知器神经网络和特征选择方法,识别与自闭症相关的致病基因,为早期诊断提供了潜在的解决方案。研究展示了AI技术在教育和医学领域的重要应用潜力。原创 2025-06-24 13:29:06 · 43 阅读 · 0 评论 -
23、无线传感器网络与烹饪视频生成技术探索
本文探讨了无线传感器网络中的MSMO-WSN方法和基于亚马逊云服务的ChefAI文本到烹饪视频可视化技术。MSMO-WSN结合K-means聚类和蜘蛛猴优化算法,实现安全数据传输和能量效率优化,适用于工业监测、环境监测和智能家居。ChefAI则利用深度学习模型将食谱文本转化为烹饪视频,推动美食教学和虚拟厨房体验的发展。文章分析了两种技术的应用前景与挑战,并展望了未来发展方向。原创 2025-06-23 16:13:53 · 60 阅读 · 0 评论 -
22、数字证书管理与无线传感器网络安全路由创新方案
本文介绍了两个关键领域的创新方案:数字证书管理系统和无线传感器网络(WSN)安全路由方法。数字证书管理方案通过唯一ID和在线验证解决了传统证书管理的存储、验证和环保问题,具有高效、安全、低成本的优势。在WSN领域,基于改进蜘蛛猴优化(MSMO)的安全路由方案结合信任、能量、距离和节点度数,有效减少了黑洞攻击和数据包丢失。文章还展望了未来与区块链结合的潜力以及更高效的能量管理策略的发展方向,为数字化转型提供了支持。原创 2025-06-22 14:05:03 · 73 阅读 · 0 评论 -
21、脑肿瘤检测与数字证书验证平台技术解析
本文探讨了脑肿瘤检测技术和数字证书验证平台的研究与应用。脑肿瘤检测采用VGG16算法结合数据预处理和特征提取技术,提高了检测的准确性和效率;数字证书验证平台则解决了教育和组织领域中证书管理和验证的难题,提供安全、便捷的数字化解决方案。文章分析了两种技术的实施细节、优势、挑战及未来发展方向,为医疗和教育领域的技术应用提供了参考。原创 2025-06-21 10:26:08 · 66 阅读 · 0 评论 -
20、学生学业成绩预测与脑肿瘤检测分类研究
本博文探讨了机器学习在两个重要领域的应用:学生学业成绩预测和脑肿瘤检测分类。在学生学业成绩预测方面,研究了特征选择和集成方法如何提高预测模型的准确性;在脑肿瘤检测分类方面,分析了卷积神经网络(CNN)和多网络训练等技术的有效性。通过实验和对比,总结了机器学习技术在教育和医疗领域的潜力与应用前景。原创 2025-06-20 11:18:08 · 35 阅读 · 0 评论 -
19、心肌梗死分类与学生学业成绩预测的研究进展
本文介绍了基于IIWSCOA的DCNN模型用于心肌梗死分类的研究,以及通过教育数据挖掘使用集成方法进行学生学业成绩预测的相关进展。心肌梗死分类模型结合了全面的特征提取和优化算法,表现出更高的准确性和效率;学业成绩预测模型通过引入关键特征和集成方法,取得了较好的预测效果。研究为医疗和教育领域的智能化发展提供了参考,并展望了未来进一步提升模型性能的方向。原创 2025-06-19 09:53:11 · 83 阅读 · 0 评论 -
18、驾驶员注意力与心肌梗死检测技术研究
本博客探讨了驾驶员头部姿态估计与心肌梗死早期检测技术的研究进展与应用。在驾驶员注意力方面,提出了一种基于混合几何方法的头部姿态估计技术,通过图像预处理、人脸特征检测与姿态估计,实现了在不同光照和复杂环境下的高鲁棒性实时检测。在心肌梗死检测方面,研究基于改进的入侵杂草正弦余弦优化算法(IIWSCOA)优化深度卷积神经网络(DCNN),利用ECG信号实现了高准确率的早期分类。文章还对两种技术进行了对比分析,并展望了其在智能汽车领域的综合应用潜力,同时讨论了各自面临的技术挑战与未来发展方向。原创 2025-06-18 11:21:20 · 44 阅读 · 0 评论 -
17、利用分类模型预测学生成绩
本文探讨了在疫情期间线上学习模式下,如何利用分类模型预测学生成绩。通过收集来自不同大学学生的在线调查数据,研究使用了包括KNN、SVM、Xgboost等在内的11种分类技术,并对数据进行了预处理和特征分析。研究重点识别了影响学生成绩的关键因素,如出勤率、学习材料和教授答疑等,并通过SMOTE算法解决数据类别不平衡问题。最终,SVM、Xgboost和梯度提升分类器在预测学生成绩方面表现最佳,为教育机构提供了改进教学策略的依据。原创 2025-06-17 13:19:07 · 51 阅读 · 0 评论 -
16、利用机器学习算法预测和分析维生素D缺乏情况
本研究探讨了利用机器学习算法,特别是随机森林分类器和决策树算法,预测和分析维生素D缺乏(VDD)的严重程度。通过数据预处理和多种性能指标评估,随机森林分类器在65-35%的训练和测试比例下表现出更高的准确率和更低的平均绝对误差,成为预测VDD严重程度的最佳模型。原创 2025-06-16 09:55:49 · 61 阅读 · 0 评论
分享