利用机器学习算法预测和分析维生素D缺乏情况
1. 引言
维生素D是一种对人体诸多方面都有积极影响的重要营养素。全球约有10亿人患有严重的维生素D缺乏症,且该缺乏症与心脏病、糖尿病和乳腺癌等自身免疫性疾病有关。
在临床领域,每天都会收集大量数据,但使用传统方法分析海量数据集颇具挑战。而将机器学习融入模型已被证明能带来更好的结果,使用机器学习算法评估维生素D缺乏症(VDD)既经济又能推动治疗发展。
过去,人们使用线性回归(LR)、多变量自适应回归样条、支持向量回归(SVR)等统计模型和问卷来预测VDD的严重程度,但这些统计模型的结果不一致,且未应用机器学习方法来评估严重程度。典型的统计模型(如LR)在预测VDD严重程度时,会受到整体预测性能的限制和大量因素的影响。
目前,确定维生素D状态成本高昂,且广泛采用生化方法。本研究旨在减少识别患者VDD所需的耗时分析方法,通过多种机器学习模型(如决策树和随机森林分类器)预测VDD数据集的严重程度,并使用各种性能指标评估模型结果,以找到预测VDD严重程度的最佳机器学习分类器。
2. 相关工作
传统研究中较少使用随机森林树、k - 均值、支持向量回归和决策树等模型,而是采用多元回归分类器。以往所有研究都使用不同类型的指标来预测维生素D缺乏情况,以下是相关研究的介绍:
|研究人员|使用方法|评估指标|
| ---- | ---- | ---- |
|Kuwabara等|使用多种问卷估计维生素D缺乏程度,用逻辑回归创建预测模型|灵敏度、特异性和曲线下面积(AUC)|
|Gonoodi等|使用选择树模型检查与维生素D缺乏相关的风险因素|接收器工作特征
超级会员免费看
订阅专栏 解锁全文
26

被折叠的 条评论
为什么被折叠?



